近似:平均场近似对HP多体波函数h??Z1e2XV2m;itdr-5jHartree Approximation: the electrons do not interactexplicitly with the others, but each electron interactswith the medium potential given by the other electrons
• 对HP多体波函数 近似III:平均场近似 Hartree Approximation: the electrons do not interact explicitly with the others, but each electron interacts with the medium potential given by the other electrons
变分法NNNZZJ;E=ZH +=2i=1i=1 j=1j#i-单电子积分项ZMW72H; = [Φ;(i)h,Φ;(i)dt; =[Φ,(i)Φ,(i)dt2TiAA=1一库仑双电子积分-代表经典两个电荷密度之间的排斥作用(由Φ;andΦ:描述)J; =JJ(1)二Φ;(2)dt,dt,12
变分法 N i 1 N j i j 1 ij N i 1 E Hi J 21 i i MA 1 iA 2 A i i i i i i i Φ (i)dτ rZ 21 H Φ (i)h Φ (i)dτ Φ (i) - 单电子积分项 1 2 2j 12 2 ij i Φ (2)dτ dτ r1 J Φ (1) - 库仑双电子积分 - 代表经典两个电荷密度之间的排斥作用(由 Φi and Φj 描述)
Hartree方程MNZAN>Z[Φ, ()]dt:Φ.;(i)=8,Φ, (i)X2TiAi=1 j=1A=1j#iN-分子轨道能量8; =H, +ZJji=1j+iNNN-1总能量E=&-ZJi=1i=1 j=i+1
Hartree 方程 dτ Φ (i) ε Φ (i) r 1 Φ (j) r Z 2 1 i i i N i 1 N j i j 1 j ij 2 j M A 1 iA 2 A i N j i j 1 i Hi Jij ε - 分子轨道能量 N-1 i 1 N j 1 ij N i 1 E i J i 总能量
(0In order to find , we needΦ, = SCF procedure-中(ildtJ,Jodtdt,Ci次送代电子密度分布(i(i)L江P;(r)=Φ;(r)1NNN总电子密度B=ZEEJE-二NNPtot(r)= p;(r)=Φ;(r)i=1i=1No(Converged?Solution: Self-ConsistentYesField(SCF)Stop
Solution: Self-Consistent Field (SCF ) In order to find Φi we need Φi SCF procedure 2 i i ρ (r) Φ (r) i 次迭代 电子密度分布 N i 1 2 i N i 1 tot i ρ (r) ρ (r) Φ (r) 总电子密度
N个电子体系Slater波函数HP波函数不满足电子(费米子)全同性要求的波函数反对成性如:双粒子体系PROBLEM=P。(1)(2)是两电子体系本征方程的解也是本征解交换算符P12P[(1)(2)]=(2)(1)-(1)(2)wa则满足交换反对称条件的波函数:Slater行列式形式(SD)(b) (1)(1)Forfermions the negativesignmustbeused,sothat方[9. (1)%(2)-9.(2)g (1)] —ysDthewavefunction goesto.(2) (2)identicallyzero ifthestatesaand bareidentical
N个电子体系Slater波函数 HP 波函数