1.刚度法(k1 - 0°m,)Y, + ki2Y2 = Fpl(4)位移幅值:k2)Y +(k22 - 0'm2)Y, = Fp2(k2 -0°m)F,Y-4ki-0'mkn2D.D。 =k21k22 - 0′m2k,Fp12Dm,=m2=m,k,=k,=k(k-mo°)F,Y, =D =(2k-0′m)(k-0m)-k2DokFp=0,或 0=02Y,DoD=0,当DiD,不全为0时,发生共振
(4)位移幅值: 2 2 2 1 0 2 2 0 ( ) P P k mF Y D k F Y D − θ ⎫ = ⎪ ⎪ ⎬ ⎪ = ⎪ ⎭ m 1=m 2=m , k1=k2=k 2 1 0 2 0 ( ) P P km F Y D kF Y D − θ ⎫ = ⎪ ⎪ ⎬ ⎪ = ⎪ ⎭ ( ) ( ) 2 22 0 D k mk m k = 2 − −− θ θ 2 2 21 22 1 12 2 11 0 k k m k m k D θ θ − − = 1 或 2 θ = ω , θ = ω D0=0, 当 D1 D2不全为0 时,发生共振 1. 刚度法 ⎪⎭ ⎪ ⎬ ⎫ + − = − + = 2 2 2 2 21 1 22 1 1 12 2 1 2 11 ( ) ( ) P P k Y k m Y F k m Y k Y F θ θ
1.刚度法讨论共振现象D。=(2k-0°m)(k -0°m) - k2AD。 = m204 - 3km02 + k2 = m2(0? - 0)(02 - 02)mg?1-3FpkY =0?k0211aa?八1Fpk02921-O
讨论共振现象 24 2 2 2 2 2 2 2 0 12 D m km k m = − += − − θ 3 ( )( ) θ θ ωθ ω ( )( ) 2 22 0 D = 2k mk m k − −− θ θ 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 P P m F k Y k F Y k θ θ θ ω ω θ θ ω ω ⎫ − ⎪ = ⎪ ⎛ ⎞⎛ ⎞ ⎪ ⎜ ⎟⎜ ⎟ − − ⎪ ⎝ ⎠⎝ ⎠ ⎬⎪ = ⎪ ⎛ ⎞⎛ ⎞ ⎪ ⎜ ⎟⎜ ⎟ − − ⎪ ⎝ ⎠⎝ ⎠ ⎭ 1. 刚度法