维生素是维持人和动物机体健康所必须的一类营养素,本质为低分子有机化合物,它们不能在体内合成,或者所合成的量难以满足机体的 需要,所以必须由食物供给。维生素的每日需要量甚少(常以毫克或微克计),它们既不是构成机体组织的原料,也不是体内供能的物质,然而 在调节物质代谢、促进生长发育和维持生理功能等方面却发挥着重要作用,如果长期缺乏某种维生素,就会导致疾病(avitaminosis), 维生素的种类很多,通常按其溶解性分为脂溶性维生素和水溶性维生素两大类。 脂溶性维生素包括: 维生素A(视黄醇retinol) 维生素D(钙化醇calciferol) 维生素E(生育酚tocopherol) 维生素K(凝血维生素) 水溶性维生素包括: 维生素B复合体,其中有: 维生素BI(硫胺素thiamine) 维生素B2(核黄素riboflavin) 维生素Pp(尼克酸及尼克酰胺nicotinic acid and nicotinamide) 维生素B6(吡哆醇pyndoxine及其醛、胺衍生物) 泛酸(遍多酸pantothenic acid) 生物素(biotin) 硫辛酸((lipoic acid) 叶酸(folic acid) 维生素BI2(钴胺素cobalamin) 维生素C(抗坏血酸ascorbic acid) 维生素P(通透性维生素) 第一节脂溶性维生素 脂溶性维生素中以维生素A和D在营养上更为重要,缺少他们将分别引起维生素A或D缺乏病。维生素E缺乏病仅在动物实验时观察到,至 于维生素K,因肠道细菌可以合成它,所以人类维生素K缺乏病多系吸收障碍或因长期使用抗生素或维生素K的代谢拮抗药(metabolic antagonists)所致。 一、化学特点 1维生素A 维生素A是由阝-白芷酮环和两分子2.甲基丁二烯构成的不饱和一元醇。一般所说维生素A系指A1而言,存在于哺乳动物和咸水鱼肝脏中。 在淡水鱼肝油中尚发现另一种维生素A,称为A2,其生理效用仅及A1的40%。从化学结构上比较,维生素A2在B-白芷酮环上比A1多一个双 袋 CH,OH CHOH 视黄醇(维生兼A,) 3一税氢视黄的(维生素A】 (全反型) (余反甜】 维生素A的侧链含有4个双链,故可形成多种顺反异构体,其中较重要的有全反型(AⅡ-trans)和-顺型(11-cis)。视黄醇在体内可被氧化成 视黄醛(retinal),此反应是可逆的。 CH.OH CHO 11-网视黄醉 11一硕机黄帝 视黄醛进一部被氧化则成视黄酸(retinoicacid),但此反应在体内是不可逆的。 视黄醇是黄色片状结晶,通常与脂肪酸形成酯存在于食物中。不论是维生素A1或A2都可与三氯化锑起反应,呈现深兰色。这种性质可用 于测定维生素A。 维生素的化学性质活泼,易被空气氧化而失去生理作用,紫外线照射亦可使之破坏,故维生素A的制剂应装在棕色瓶内避光贮存。 维生素A只存在于动物性食品(肝、蛋、肉)中,但是在很多植物性食品如胡萝卜、红辣椒、菠菜、芥菜等有色蔬菜中也含有具有维生素A效 能的物质,例如各种类胡萝卜素(carotenoid),其中最重要者为B-胡萝卜素(B-carotene)
维生素是维持人和动物机体健康所必须的一类营养素,本质为低分子有机化合物,它们不能在体内合成,或者所合成的量难以满足机体的 需要,所以必须由食物供给。维生素的每日需要量甚少(常以毫克或微克计),它们既不是构成机体组织的原料,也不是体内供能的物质,然而 在调节物质代谢、促进生长发育和维持生理功能等方面却发挥着重要作用,如果长期缺乏某种维生素,就会导致疾病(avitaminosis)。 维生素的种类很多,通常按其溶解性分为脂溶性维生素和水溶性维生素两大类。 脂溶性维生素包括: 维生素A(视黄醇retinol) 维生素D(钙化醇calciferol) 维生素E(生育酚tocopherol) 维生素K(凝血维生素) 水溶性维生素包括: 维生素B复合体,其中有: 维生素B1(硫胺素thiamine) 维生素B2(核黄素riboflavin) 维生素PP(尼克酸及尼克酰胺nicotinic acid and nicotinamide) 维生素B6(吡哆醇pyndoxine及其醛、胺衍生物) 泛酸(遍多酸pantothenic acid) 生物素(biotin) 硫辛酸(lipoic acid) 叶酸(folic acid) 维生素B12(钴胺素cobalamin) 维生素C(抗坏血酸ascorbic acid) 维生素P(通透性维生素) 第一节 脂溶性维生素 脂溶性维生素中以维生素A和D在营养上更为重要,缺少他们将分别引起维生素A或D缺乏病。维生素E缺乏病仅在动物实验时观察到,至 于维生素K,因肠道细菌可以合成它,所以人类维生素K缺乏病多系吸收障碍或因长期使用抗生素或维生素K的代谢拮抗药(metabolic antagonists)所致。 一、化学特点 1.维生素A 维生素A是由β-白芷酮环和两分子2-甲基丁二烯构成的不饱和一元醇。一般所说维生素A系指A1而言,存在于哺乳动物和咸水鱼肝脏中。 在淡水鱼肝油中尚发现另一种维生素A,称为A2,其生理效用仅及A1的40%。从化学结构上比较,维生素A2在β-白芷酮环上比A1多一个双 键。 维生素A的侧链含有4个双链,故可形成多种顺反异构体,其中较重要的有全反型(AⅡ-trans)和Ⅱ-顺型(11-cis)。视黄醇在体内可被氧化成 视黄醛(retinal),此反应是可逆的。 视黄醛进一部被氧化则成视黄酸(retinoicacid),但此反应在体内是不可逆的。 视黄醇是黄色片状结晶,通常与脂肪酸形成酯存在于食物中。不论是维生素A1或A2都可与三氯化锑起反应,呈现深兰色。这种性质可用 于测定维生素A。 维生素A的化学性质活泼,易被空气氧化而失去生理作用,紫外线照射亦可使之破坏,故维生素A的制剂应装在棕色瓶内避光贮存。 维生素A只存在于动物性食品(肝、蛋、肉)中,但是在很多植物性食品如胡萝卜、红辣椒、菠菜、芥菜等有色蔬菜中也含有具有维生素A效 能的物质,例如各种类胡萝卜素(carotenoid),其中最重要者为β-胡萝卜素(β-carotene)
以 一胡罗卜素 B-胡萝卜素可被小肠粘膜或肝脏中的加氧酶(B-胡萝卜素-15,15'.加氧酶)作用转变成为视黄醇,所以又称做维生素A元(provitamin A)。尽 管理论上1分子B-胡萝卜素可以生成2分子维生素A,但由于胡萝卜素的吸收不良,转变有限,所以实际上6微克β-胡萝卜素才具有1微克维生素 A的生物活性。 食物中的维生素A酯在小肠受酯酶的作用而水解,所产生的脂肪酸和维生素A进入小肠上皮细胞后又重新合成维生素A酯,并掺入乳糜微 粒,通过淋巴转运,贮存于肝脏。肝脏中的维生素A可应机体需要向血中释放。血浆中的维生素A是非酯化型的。它与视黄醇结合蛋白(RBP)结 合而被转运。食物中的类胡萝卜素经小肠吸收后主要在小肠粘膜转变为维生素A,一部分也可在肝脏中进行此种转变。 2.维生素D 维生素D系固醇类的衍生物,人体内维生素D主要是由7-脱氢胆固醇经紫外线照射而转变,称为维生素D3或胆钙化醇(cholecalciferol)。植 物中的麦角固醇经紫外线照射后可产生另一种维生素D,称为维生素D2或钙化醇。 两种维生素D具有同样的生理作用。人体主要从动物食品中获取一定量的维生素D3(它常与维生素A共同存在),而植物中的麦角固醇除非 经过紫外线照射(转变为维生素D2),否则很难被人体吸收利用。然而,正常成人所需要的维生素D主要来源于7-脱氢胆固醇的转变。7-脱氢胆 固醇存在于皮肤内,它可由胆固醇脱氢产生,也可直接由乙酰CoA合成。人体每日可合成维生素D3200?00国际单位(1国际单位=0.025微克维生 素D3),因此只要充分接受阳光照射,即完全可以满足生理需要。 不论维生素D2或D3,本身都没有明显的生理活性,它们必须在体内进行一定的代谢转化,才能生成活性的化合物,即活性维生素D。(参 阅第十八章) 果外裁 麦角翩醇 情、肪→乙酰CnA 维 生素】 脱氢 外线 7-脱氢胆固胖 HO 姓生景D, 图3-1维生素D2和D3的生成 维生素D2及D3均为无色针状结晶,易溶于脂肪和有机溶剂,除对光敏感外,化学性质一般较稳定。 3.维生素E 维生素E又称为生育酚,已经发现的生育酚有α、B、Y和δ四种,其中以α-生育酚的生理效用最强。它们都是苯骈二氢吡喃的衍生物。α生 育酚的结构如下: H CH HC- CH,-(CH,-CH,-CH-CH.)H CH, 维生赏E任一生青影) 维生素E为油状物,具有特异的紫外吸收光谱(295m波长处),在无氧状况下能耐高热,并对酸和碱有一定抗力,但对氧却十分敏感,是一 种有效的抗氧化剂。维生素E被氧化后即失效。 4.维生素K
β-胡萝卜素可被小肠粘膜或肝脏中的加氧酶(β-胡萝卜素-15,15′-加氧酶)作用转变成为视黄醇,所以又称做维生素A元(provitamin A)。尽 管理论上1分子β-胡萝卜素可以生成2分子维生素A,但由于胡萝卜素的吸收不良,转变有限,所以实际上6微克β-胡萝卜素才具有1微克维生素 A的生物活性。 食物中的维生素A酯在小肠受酯酶的作用而水解,所产生的脂肪酸和维生素A进入小肠上皮细胞后又重新合成维生素A酯,并掺入乳糜微 粒,通过淋巴转运,贮存于肝脏。肝脏中的维生素A可应机体需要向血中释放。血浆中的维生素A是非酯化型的。它与视黄醇结合蛋白(RBP)结 合而被转运。食物中的类胡萝卜素经小肠吸收后主要在小肠粘膜转变为维生素A,一部分也可在肝脏中进行此种转变。 2.维生素D 维生素D系固醇类的衍生物,人体内维生素D主要是由7-脱氢胆固醇经紫外线照射而转变,称为维生素D3或胆钙化醇(cholecalciferol)。植 物中的麦角固醇经紫外线照射后可产生另一种维生素D,称为维生素D2或钙化醇。 两种维生素D具有同样的生理作用。人体主要从动物食品中获取一定量的维生素D3(它常与维生素A共同存在),而植物中的麦角固醇除非 经过紫外线照射(转变为维生素D2),否则很难被人体吸收利用。然而,正常成人所需要的维生素D主要来源于7-脱氢胆固醇的转变。7-脱氢胆 固醇存在于皮肤内,它可由胆固醇脱氢产生,也可直接由乙酰CoA合成。人体每日可合成维生素D3200?00国际单位(1国际单位=0.025微克维生 素D3),因此只要充分接受阳光照射,即完全可以满足生理需要。 不论维生素D2或D3,本身都没有明显的生理活性,它们必须在体内进行一定的代谢转化,才能生成活性的化合物,即活性维生素D。(参 阅第十八章) 图3-1 维生素D2和D3的生成 维生素D2及D3均为无色针状结晶,易溶于脂肪和有机溶剂,除对光敏感外,化学性质一般较稳定。 3.维生素E 维生素E又称为生育酚,已经发现的生育酚有α、β、γ和δ四种,其中以α-生育酚的生理效用最强。它们都是苯骈二氢吡喃的衍生物。α-生 育酚的结构如下: 维生素E为油状物,具有特异的紫外吸收光谱(295nm波长处),在无氧状况下能耐高热,并对酸和碱有一定抗力,但对氧却十分敏感,是一 种有效的抗氧化剂。维生素E被氧化后即失效。 4.维生素K
维生素K是2.甲基1,4萘醌的衍生物,自然界已发现的有两种,存于绿叶植物中者为维生素K1,肠道细菌合成者为维生素K2,它们的结 构如下。? CH, CH, CH, 9H, CH-CH=C-CHL-(CIL,-CH,-CH-CH),-CH-CH,-CH-CH, 维生素K CH, CH, CH CH,-(CH-C-CH,-CH);-CH-c-CH, 维生素K 1,4-萘醌即具有维生素K的作用,尤以2甲基1,4-萘醌的作用最强,为天然维生素K效力的三倍,但其毒性较大。2甲基1,4萘醌又称 维生素K3,水溶性,可以人工合成,现在药用维生素K多为其还原性衍生物或亚硫酸钠盐。 二、生理作用 1.维生素A维生素A的生理作用主要表现在以下三个方面。 (I)构成视网膜的感光物质,即视色素。已知维生素A的缺乏主要影响暗视觉,与暗视觉有关的是视网膜杆状细胞中所含的视紫红质(visual purple,又名rhodopsin)。视紫红质是由维生纱A的醛衍生物(视黄醛)与蛋白质结合生成的、视蛋白与视黄醛的结合要求后者具有一定的构型,体 内只有11顺位的视黄醛才能与视蛋白结合,此种结合反应需要消耗能量并且只在暗处进行,因为视紫红质遇光则易分解。视紫红质对弱光非 常敏感,甚至一个光量子即可诱发它的光化学反应,导致其最终分解成视蛋白和全反位视黄醛。 视紫红质 前光视紫红质 ↓ 光视紫红质 ↓ 间视紫红质1 间视紫红质Ⅱ 视蛋白+全反位视黄醛 因为在此过程中视紫红质分解而退色,所以又叫做“漂白”(bleaching)、视紫红质的漂白是放能反应,通过视杆细胞外段特有的结构,能量 转换为神经冲动,引起视觉。由于视紫红质的分解,残留在视网膜内的视紫红质的量甚少,若不及时再合成,则视网膜就不能再感受弱光的刺 激,此时在光线弱的暗处就看不见物体了。然而,由视紫红质分解所产生的全反位视黄醛可以经还原、异构转变为11-顺位视黄醇,并进一步 又氧化成11-顺视黄醛。这样,在暗处11-顺视黄醛又可与视蛋白结合再生成视紫红质,如下图所示。 视紫红历 、视蛋白 11-顺型祝黄醛,异构脚我兰光全反型视黄醛 NADH H NAD' 】一项型视黄醇。 全反型视黄醇 异构酶 、血浆维 生素A+ 一肝维生素A 图3-2视紫红质的合成、分解与视黄醛的关系 人们从强光下转而进入暗处,起初看不清物体,但稍停一会儿,由于在暗处视紫红质的合成增多,分解减少,杆细胞内视紫红质含量逐渐 积累,对弱光的感受性加强,便又能看清物体,这一过程称为暗适应(dark adaptation)。从上图可以看出,当维生素A缺乏时,I1-顺视黄醛得 不到足够的补充,杆细胞内视紫红质的合成减弱,暗适应的能力下降,可致夜盲(nightblindness),祖国医学称此症状为“雀目
维生素K是2-甲基1,4-萘醌的衍生物,自然界已发现的有两种,存于绿叶植物中者为维生素K1,肠道细菌合成者为维生素K2,它们的结 构如下。? 1,4-萘醌即具有维生素K的作用,尤以2-甲基1,4-萘醌的作用最强,为天然维生素K效力的三倍,但其毒性较大。2-甲基1,4-萘醌又称 维生素K3,水溶性,可以人工合成,现在药用维生素K多为其还原性衍生物或亚硫酸钠盐。 二、生理作用 1.维生素A 维生素A的生理作用主要表现在以下三个方面。 (1)构成视网膜的感光物质,即视色素。已知维生素A的缺乏主要影响暗视觉,与暗视觉有关的是视网膜杆状细胞中所含的视紫红质(visual purple,又名rhodopsin)。视紫红质是由维生纱A的醛衍生物(视黄醛)与蛋白质结合生成的、视蛋白与视黄醛的结合要求后者具有一定的构型,体 内只有11-顺位的视黄醛才能与视蛋白结合,此种结合反应需要消耗能量并且只在暗处进行,因为视紫红质遇光则易分解。视紫红质对弱光非 常敏感,甚至一个光量子即可诱发它的光化学反应,导致其最终分解成视蛋白和全反位视黄醛。 视紫红质 ↓ 前光视紫红质 ↓ 光视紫红质 ↓ 间视紫红质Ⅰ ↓ 间视紫红质Ⅱ ↓ 视蛋白+全反位视黄醛 因为在此过程中视紫红质分解而退色,所以又叫做“漂白”(bleaching)、视紫红质的漂白是放能反应,通过视杆细胞外段特有的结构,能量 转换为神经冲动,引起视觉。由于视紫红质的分解,残留在视网膜内的视紫红质的量甚少,若不及时再合成,则视网膜就不能再感受弱光的刺 激,此时在光线弱的暗处就看不见物体了。然而,由视紫红质分解所产生的全反位视黄醛可以经还原、异构转变为11-顺位视黄醇,并进一步 又氧化成11-顺视黄醛。这样,在暗处11-顺视黄醛又可与视蛋白结合再生成视紫红质,如下图所示。 图3-2 视紫红质的合成、分解与视黄醛的关系 人们从强光下转而进入暗处,起初看不清物体,但稍停一会儿,由于在暗处视紫红质的合成增多,分解减少,杆细胞内视紫红质含量逐渐 积累,对弱光的感受性加强,便又能看清物体,这一过程称为暗适应(dark adaptation)。从上图可以看出,当维生素A缺乏时,11-顺视黄醛得 不到足够的补充,杆细胞内视紫红质的合成减弱,暗适应的能力下降,可致夜盲(nightblindness),祖国医学称此症状为“雀目
(2)维持上皮结构的完整与健全 维生素A是维持一切上皮组织健全所必需的物质,缺乏时上皮干燥、增生及角化,其中以眼、呼吸道、消化道、泌尿道及生殖系统等的上 皮影响最为显著。在眼部,由于泪腺上皮角化,泪液分泌受阻,以致角膜、结合膜干燥产生干眼病(xerophthalmia),所以维生素A又称为抗干 眼病维生素。皮脂腺及汗腺角化时,皮肤干燥,毛囊周围角化过度,发生毛囊丘疹与毛发脱落。由于上皮组织的不健全,机体抵抗微生物侵袭 的能力降低,容易感染疾病。 (3)促进生长、发育 缺乏维生素A时,儿童可出现生长停顿、骨酪成长不良和发育受阻。在缺乏维生素A的雌性大鼠则出现排卵减少,影响生殖。 维生素A如何维持上皮组织的健全和促进儿童和幼小动物的生长、发育其机理尚未完全阐明。近年来的研究表明,维生素A(视黄醇)及其衍 生物视黄酸可影响上皮细胞的分化过程。缺乏维生素A则培养中的上皮细胞趋向于分化为复层鳞状上皮,而向培养基中添加维生素则减弱此 种表型的表达,刺激粘液分泌上皮的形成。再从分子机制上探讨则发现维生素A具有类固醇激素样的作用,通过与细胞内受体结合,形成复合 物转位于细胞核内,启动某种基因的转录和促进某种蛋白质的合成(参看代谢调节一章)。此种作用已在角质细胞的角蛋白合成和胚胎癌细胞的 IV型胶原蛋白合成中得到证实。视黄酸还有促进胚胎的正常发育和分化以及对抗促癌剂(promoters)的作用。然而,有人认为维生素A的抗癌作 用不在于它的对基因表达的调整,而是与它对细胞表面的作用有关。已知维生素A可促进糖蛋白的合成,特别是作为细胞表面受体的糖蛋白和 纤维粘连蛋白(fibronectir)的合成。癌变细胞其表面因缺乏纤维粘连蛋白而丧失正常粘附能力,此缺陷可被维生素A所逆转。维生素A还使细胞 表面上的EGF受体(上皮生长因子受体)数目增加,通过促进EGF与细胞的结合而促进生长。 2.维生素D 维生素D能促进小肠对食物中钙和磷的吸收,维持血中钙和磷的正常含量,促进骨和齿的钙化作用,详见第18章钙磷代谢。 3.维生素E 维生素E与动物生殖机能有关,唯性动物缺少维生素E则失去正常生育能力,一般虽能受孕,但由于子宫机能障碍,易引起胎儿死亡及吸 收、导致流产。在雄性动物缺少维生素E则罩丸生殖上皮发生退行性变,伴有输精管菱缩,精子退化,尾部消失,丧失活动力。在人类单纯由 于缺少维生素E而发生的病尚属罕见,但在临床上它可作为药物使用,治疗某些习惯性流产,有时能收到一定效果。 实验研究表明,维生素E有稳定不饱和脂肪酸的作用,缺少维生素E则体内脂肪组织中的不和脂肪酸易于被过氧化物氧化而聚合,此种过氧 化物聚合物一方面使得皮下脂肪熔点升高,刺激组织引起病变,形成硬皮症,另一方面它对神经、肌肉及血管等组织亦起着有害作用,动物缺 少维生素E则其横纹肌菱缩或瘫痪,肌纤维甚至可以坏死。维生素E对脂肪代谢和肌肉代谢的调节作用是与它本身的化学性质相关的。因为维生 素E对氧非常敏感,是一种强有力的抗氧化剂,可以降低组织的氧化速度。当它与不饱和脂肪酸共存时则可防止后者被过氧化物氧化。同样, 肠道内或肝脏内的维生素A亦可因维生素E之存在而减少其被氧化破坏。维生素E的此种抗氧化剂作用常应用来保存维生素A制剂和各种食用油 脂。 此外,维生素E尚能促进与生物氧化有关的辅酶Q(参与第6章)的合成。 4.维生素K 维生素K可以促进肝脏合成多种凝血因子,因而促进血液凝固,详见第14章。 第二节水溶性维生素 一、维生素B复合体 维生素B复合体是一个大家族(维生素B族),至少包括十余种维生素。其共同特点是:①在自然界常共同存在,最丰富的来源是酵母和肝 脏;②从低等的微生物到高等动物和人类都需要它们作为营养要素;③同其他维生素比较,B族维生素作为酶的辅基而发挥其调节物质代谢作 用,了解得更为清楚:④从化学结构上看,除个别例外,大都含氨:⑤从性质上看此类维生素大多易溶于水,对酸稳定,易被碱破坏。 除上述共性外,各个维生素尚有其特点,为了叙述方便,现将B族中各个维生素按其化学特点和生理作用归纳为以下三组。 (一)硫胺素、硫辛酸、生物素及泛酸 硫胺素(即维生素B1)因其结构中有含$的噻唑环与含氨基的嘧啶环故名,其纯品大多以盐酸盐或硫酸盐的形式存在。盐酸硫胺素为白色结 晶,有特殊香味,在水中溶解度较大,在碱性溶液中加热极易分解破坏,而在酸性溶液中虽加热到120℃也不被破坏。氧化剂及还原剂均可使 其失去作用,硫胺素经氧化后转变为脱氢硫胺素(又称硫色素thiochrome),它在紫外光下呈兰色荧光,可以利用此特性来检测生物组织中的维 生素B1或进行定量测定。?
(2)维持上皮结构的完整与健全 维生素A是维持一切上皮组织健全所必需的物质,缺乏时上皮干燥、增生及角化,其中以眼、呼吸道、消化道、泌尿道及生殖系统等的上 皮影响最为显著。在眼部,由于泪腺上皮角化,泪液分泌受阻,以致角膜、结合膜干燥产生干眼病(xerophthalmia),所以维生素A又称为抗干 眼病维生素。皮脂腺及汗腺角化时,皮肤干燥,毛囊周围角化过度,发生毛囊丘疹与毛发脱落。由于上皮组织的不健全,机体抵抗微生物侵袭 的能力降低,容易感染疾病。 (3)促进生长、发育 缺乏维生素A时,儿童可出现生长停顿、骨骼成长不良和发育受阻。在缺乏维生素A的雌性大鼠则出现排卵减少,影响生殖。 维生素A如何维持上皮组织的健全和促进儿童和幼小动物的生长、发育其机理尚未完全阐明。近年来的研究表明,维生素A(视黄醇)及其衍 生物视黄酸可影响上皮细胞的分化过程。缺乏维生素A则培养中的上皮细胞趋向于分化为复层鳞状上皮,而向培养基中添加维生素A则减弱此 种表型的表达,刺激粘液分泌上皮的形成。再从分子机制上探讨则发现维生素A具有类固醇激素样的作用,通过与细胞内受体结合,形成复合 物转位于细胞核内,启动某种基因的转录和促进某种蛋白质的合成(参看代谢调节一章)。此种作用已在角质细胞的角蛋白合成和胚胎癌细胞的 Ⅳ型胶原蛋白合成中得到证实。视黄酸还有促进胚胎的正常发育和分化以及对抗促癌剂(promoters)的作用。然而,有人认为维生素A的抗癌作 用不在于它的对基因表达的调整,而是与它对细胞表面的作用有关。已知维生素A可促进糖蛋白的合成,特别是作为细胞表面受体的糖蛋白和 纤维粘连蛋白(fibronectin)的合成。癌变细胞其表面因缺乏纤维粘连蛋白而丧失正常粘附能力,此缺陷可被维生素A所逆转。维生素A还使细胞 表面上的EGF受体(上皮生长因子受体)数目增加,通过促进EGF与细胞的结合而促进生长。 2.维生素D 维生素D能促进小肠对食物中钙和磷的吸收,维持血中钙和磷的正常含量,促进骨和齿的钙化作用,详见第18章钙磷代谢。 3.维生素E 维生素E与动物生殖机能有关,雌性动物缺少维生素E则失去正常生育能力,一般虽能受孕,但由于子宫机能障碍,易引起胎儿死亡及吸 收、导致流产。在雄性动物缺少维生素E则睾丸生殖上皮发生退行性变,伴有输精管萎缩,精子退化,尾部消失,丧失活动力。在人类单纯由 于缺少维生素E而发生的病尚属罕见,但在临床上它可作为药物使用,治疗某些习惯性流产,有时能收到一定效果。 实验研究表明,维生素E有稳定不饱和脂肪酸的作用,缺少维生素E则体内脂肪组织中的不和脂肪酸易于被过氧化物氧化而聚合,此种过氧 化物聚合物一方面使得皮下脂肪熔点升高,刺激组织引起病变,形成硬皮症,另一方面它对神经、肌肉及血管等组织亦起着有害作用,动物缺 少维生素E则其横纹肌萎缩或瘫痪,肌纤维甚至可以坏死。维生素E对脂肪代谢和肌肉代谢的调节作用是与它本身的化学性质相关的。因为维生 素E对氧非常敏感,是一种强有力的抗氧化剂,可以降低组织的氧化速度。当它与不饱和脂肪酸共存时则可防止后者被过氧化物氧化。同样, 肠道内或肝脏内的维生素A亦可因维生素E之存在而减少其被氧化破坏。维生素E的此种抗氧化剂作用常应用来保存维生素A制剂和各种食用油 脂。 此外,维生素E尚能促进与生物氧化有关的辅酶Q(参与第6章)的合成。 4.维生素K 维生素K可以促进肝脏合成多种凝血因子,因而促进血液凝固,详见第14章。 第二节 水溶性维生素 一、维生素B复合体 维生素B复合体是一个大家族(维生素B族),至少包括十余种维生素。其共同特点是:①在自然界常共同存在,最丰富的来源是酵母和肝 脏;②从低等的微生物到高等动物和人类都需要它们作为营养要素;③同其他维生素比较,B族维生素作为酶的辅基而发挥其调节物质代谢作 用,了解得更为清楚;④从化学结构上看,除个别例外,大都含氮;⑤从性质上看此类维生素大多易溶于水,对酸稳定,易被碱破坏。 除上述共性外,各个维生素尚有其特点,为了叙述方便,现将B族中各个维生素按其化学特点和生理作用归纳为以下三组。 (一)硫胺素、硫辛酸、生物素及泛酸 硫胺素(即维生素B1)因其结构中有含S的噻唑环与含氨基的嘧啶环故名,其纯品大多以盐酸盐或硫酸盐的形式存在。盐酸硫胺素为白色结 晶,有特殊香味,在水中溶解度较大,在碱性溶液中加热极易分解破坏,而在酸性溶液中虽加热到120℃也不被破坏。氧化剂及还原剂均可使 其失去作用,硫胺素经氧化后转变为脱氢硫胺素(又称硫色素thiochrome),它在紫外光下呈兰色荧光,可以利用此特性来检测生物组织中的维 生素B1或进行定量测定。?
CH -C-CH -2H -NH·HCNC -CH,-CH.,OH 盐破硫胺 CH.CHL.OH 疏色素 维生素B1易被小肠吸收,在肝脏中维生素B1被磷酸化成为焦磷酸硫胺素(TPP,又称辅羧酶),它是体内催化-酮酸氧化脱羧的辅酶,也是 磷酸戊糖循环中转酮基酶的辅酶(参看糖代谢)。当维生素B1缺乏时,由于TPP合成不足,丙酮酸的氧化脱羧发生障碍,导致糖的氧化利用受 阻。在正常情况下,神经组织的能量来源主要靠糖的氧化供给,所以维生素B1缺乏首先影响神经组织的能量供应,并伴有丙酮酸及乳酸等在神 经组织中的堆积,出现手足麻木、四肢无力等多发性周围神经炎的症状。严重者引起心跳加快、心脏扩大和心力衰竭,临床上称为脚气病 (beriberi),因此又称维生素BI为抗脚气病维生素。 维生素Bl尚有抑制胆碱酯酶(choline esterase)的作用,胆碱酯酶能催化神经递质·乙酰胆碱(acetylcholine))水解,而乙酰胆碱与神经传导有 关。因此,缺乏维生素B1时,由于胆碱酯酶活性增强,乙酰胆碱水解加速,使神经传导受到影响,可造成胃肠蠕动缓慢、消化液分泌减少、食 欲不振和消化不良等症状。反之,给以维生素B1,则可增加食欲、促进消化。? 硫辛酸学名6.8-二硫辛酸,其结构式如下: CH2 CH2 CH -(CH2)-COOH 硫辛酸 硫辛酸分子内含双$键,故常用 表示之。 生物素的结构包括含硫的噻吩环、尿素及戊酸三部分,如下式 0 HN NH HC CH H2C- -CH-(CH2)-COOH S 生物素 泛酸系由-丙氨酸与羟基丁酸结合而构成,因其广泛存在于动植物组织故名泛酸或遍多酸。 CH3 CH2-C-CH-CO-NH-CH2-CH2-CO0H OH CH3 OH 泛酸,N.(a,二羟,B,B-二甲基丁酰)B-丙氨酸 泛酸在机体组织内是与疏基乙胺、焦磷酸及3'磷酸腺苷结合成为辅酶A而起作用的。辅酶A的结构如下,因其活性基为奎H故常用C0A?SH 表示之
维生素B1易被小肠吸收,在肝脏中维生素B1被磷酸化成为焦磷酸硫胺素(TPP,又称辅羧酶),它是体内催化a-酮酸氧化脱羧的辅酶,也是 磷酸戊糖循环中转酮基酶的辅酶(参看糖代谢)。当维生素B1缺乏时,由于TPP合成不足,丙酮酸的氧化脱羧发生障碍,导致糖的氧化利用受 阻。在正常情况下,神经组织的能量来源主要靠糖的氧化供给,所以维生素B1缺乏首先影响神经组织的能量供应,并伴有丙酮酸及乳酸等在神 经组织中的堆积,出现手足麻木、四肢无力等多发性周围神经炎的症状。严重者引起心跳加快、心脏扩大和心力衰竭,临床上称为脚气病 (beriberi),因此又称维生素B1为抗脚气病维生素。 维生素B1尚有抑制胆碱酯酶(choline esterase)的作用,胆碱酯酶能催化神经递质-乙酰胆碱(acetylcholine)水解,而乙酰胆碱与神经传导有 关。因此,缺乏维生素B1时,由于胆碱酯酶活性增强,乙酰胆碱水解加速,使神经传导受到影响,可造成胃肠蠕动缓慢、消化液分泌减少、食 欲不振和消化不良等症状。反之,给以维生素B1,则可增加食欲、促进消化。? 硫辛酸学名6.8-二硫辛酸,其结构式如下: 硫辛酸分子内含双S键,故常用 表示之。 生物素的结构包括含硫的噻吩环、尿素及戊酸三部分,如下式 泛酸系由β-丙氨酸与羟基丁酸结合而构成,因其广泛存在于动植物组织故名泛酸或遍多酸。 泛酸,N-(α,r-二羟,β,β-二甲基丁酰)β-丙氨酸 泛酸在机体组织内是与巯基乙胺、焦磷酸及3′-磷酸腺苷结合成为辅酶A而起作用的。辅酶A的结构如下,因其活性基为桽H故常用CoA?SH 表示之