2. 算例计算局部坐标系下单元刚度矩阵(设E=1,长度以米为单位)6EI12 EIEl,EA,2EI4EIA,L;ILLL,L,L,L,柱60.50.046.9483.313.927.86.942.31梁1252.50.630.086.9413.927.83.470.58立柱:b,×h,=0.5m×1.0m横梁:b,×h,=0.5m×1.26m
(设E=1,长度以米为单位) i i L EI i i L EA i i L 2EI i i L 4EI 2 6 i i L EI 3 12 i i L EI Ai Ii Li 0.5 0.04 6 6.94 83.3 13.9 27.8 6.94 2.31 0.63 0.08 12 52.5 6.94 13.9 27.8 3.47 0.58 立柱:b1×h1=0.5m×1.0m 横梁:b2×h2=0.5m×1.26m 柱 梁 2. 算例 计算局部坐标系下单元刚度矩阵
2. 算例■计算局部坐标系下单元刚度矩阵14BA②3cDMT777000083.3-83.3006.946.942.31-2.310013.96.9427.8- 6.94[] =[F =×10-3000083.383.300-6.942.31-2.31-6.94006.9413.9-6.9427.8
[ ] [ ] 3 1 3 10 0 6 94 139 0 6 94 278 0 2 31 6 94 0 2 31 6 94 833 0 0 833 0 0 0 6 94 278 0 6 94 139 0 2 31 6 94 0 2 31 6 94 833 0 0 833 0 0 − × ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤ ⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡ − − − − − −− − = = . . . . . . . . . . . . . . . . . . . . k k 2 3 1 5 6 4 C D A B 1 2 3 2. 算例 计算局部坐标系下单元刚度矩阵
2. 算例■计算局部坐标系下单元刚度矩阵14BA2?LcDTTITT000052.5- 52.5003.473.470.58- 0.580013.927.83.47-3.47[K =×10-30 52.500052.500-3.472.31-3.47-0.580013.927.83.47-3.47
[ ] 3 2 10 0 3 47 13 9 0 3 47 27 8 0 0 58 3 47 0 2 31 3 47 52 5 0 0 52 5 0 0 0 3 47 27 8 0 3 47 13 9 0 0 58 3 47 0 0 58 3 47 52 5 0 0 52 5 0 0 − × ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤ ⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡ − − − − − −− − = . . . . . . . . . . . . . . . . . . . . k 2. 算例 2 3 1 5 6 4 C D A B 1 2 3 计算局部坐标系下单元刚度矩阵
2. 算例[k ] "(3)整体坐标系下单元刚度矩阵[ -["[[]00007°cosasina0000-sinacosa000010[7] =:.:.0000cosasina0000-sinacos a001]000
(3)整体坐标系下单元刚度矩阵 [ ] e k [ ] e sin a cos a cos a sin a sin a cos a cos a sin a T ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 [ ] [ ] [ ] [ ] e eT e e k = T k T 2. 算例