·§4超几何方程和超几何函数 276 ·S5广义超几何方程和广义超几何函数…296 S6渐近展开沃森引理………305 第八章特殊函数应用…………318 §1分离频谱分解法—曲面边界情形………318 S2分离和连续频谱分解法一复杂泛定方程情形…344 §3分离和连续谱分解法 一曲面边界情形· 350 4脉冲分解法…… 359 第九章逆散射问题和非线性问题……………… 368 §1逆散射问题… 36g §2逆散射微扰论和形式参数展开法 372 §3GLM积分方程……… 385 尽4非线性问颗……………………*…4…………………………… 396 5 Hirota变换孤立子… 403 §6贝克隆变换和无穷多个守恒律 411 §7逆散射变换…418 习题 425 参考文献… …476 “第三篇小波变换及其应用 引言… *483 第一章 小波变换,为什么要引入小波变换 48 S1连续和离散小波变换定义……484 §2为什么要研究小波变换…………486 第二章连续小波变换………………………………………49] S1一维连续小波变换的逆变换…49 §2连续小波变换 一多维情况 第三章离散小波变换框架理论…499 S1线性算符的稳定性、连续性与有界性…… 499 §2框架理论… 50 §3小波框架……………507
§4 超几何方程和超几何函数 ………………………………………………………… 276 §5 广义超几何方程和广义超几何函数 ……………………………………………… 296 §6 渐近展开 沃森引理 ……………………………………………………………… 305 第八章 特殊函数应用……………………………………………………………………… 318 §1 分离频谱分解法———曲面边界情形 ……………………………………………… 318 §2 分离和连续频谱分解法———复杂泛定方程情形 ………………………………… 344 §3 分离和连续谱分解法———曲面边界情形 ………………………………………… 350 §4 脉冲分解法 ………………………………………………………………………… 359 第九章 逆散射问题和非线性问题 ……………………………………………………… 368 §1 逆散射问题 ………………………………………………………………………… 369 §2 逆散射微扰论和形式参数展开法 ………………………………………………… 372 §3 GLM 积分方程 …………………………………………………………………… 385 §4 非线性问题 ………………………………………………………………………… 396 §5 Hirota变换 孤立子 ……………………………………………………………… 403 §6 贝克隆变换和无穷多个守恒律 …………………………………………………… 411 §7 逆散射变换 ………………………………………………………………………… 418 习题…………………………………………………………………………………………… 425 参考文献……………………………………………………………………………………… 476 第三篇 小波变换及其应用 引言…………………………………………………………………………………………… 483 第一章 小波变换,为什么要引入小波变换 ……………………………………………… 484 §1 连续和离散小波变换定义 ………………………………………………………… 484 §2 为什么要研究小波变换 …………………………………………………………… 486 第二章 连续小波变换……………………………………………………………………… 491 §1 一维连续小波变换的逆变换 ……………………………………………………… 491 §2 连续小波变换———多维情况 ……………………………………………………… 495 第三章 离散小波变换 框架理论………………………………………………………… 499 §1 线性算符的稳定性、连续性与有界性……………………………………………… 499 §2 框架理论 …………………………………………………………………………… 501 §3 小波框架 …………………………………………………………………………… 507 目 录 3
4 第四章多分辨分析…… …511 S1一维无界空间正交多分辨分析…………511 §2多维无界空间正交多分辨分析…………522 §3快速正交离散小波变换…524 §4 维空间双正交多分辨分析 …533 第五章空间有限支集光滑实离散正交或双正交小波基………538 S1实双尺度序列的计算……………………538 §2关于若干基本要求的审查 有限频宽、正则性与消失矩………54 §4父小波和母小波快速算法—级联算法…559 §5对称小波………561 第六章小波变换应用于求解数学物理方程………567 §1问题的提出… …567 S2 Calderon-Zygmund算符与伪微分算符 569 3算符压缩……………… 573 §4第二代小波基于小波的配置点方法 习题 591 参考文献 602 索引…
第四章 多分辨分析………………………………………………………………………… 511 §1 一维无界空间正交多分辨分析 …………………………………………………… 511 §2 多维无界空间正交多分辨分析 …………………………………………………… 522 §3 快速正交离散小波变换 …………………………………………………………… 524 §4 一维空间双正交多分辨分析 ……………………………………………………… 533 第五章 空间有限支集光滑实离散正交或双正交小波基………………………………… 538 §1 实双尺度序列的计算 ……………………………………………………………… 538 §2 关于若干基本要求的审查 ………………………………………………………… 544 §3 有限频宽、正则性与消失矩………………………………………………………… 547 §4 父小波和母小波快速算法———级联算法 ………………………………………… 559 §5 对称小波 …………………………………………………………………………… 561 第六章 小波变换应用于求解数学物理方程……………………………………………… 567 §1 问题的提出 ………………………………………………………………………… 567 §2 CalderònZygmund算符与伪微分算符 …………………………………………… 569 §3 算符压缩 …………………………………………………………………………… 573 §4 第二代小波 基于小波的配置点方法 …………………………………………… 579 习题…………………………………………………………………………………………… 591 参考文献……………………………………………………………………………………… 602 索引…………………………………………………………………………………………… 605 4 目 录
Contents Preface …1 Function Theory of One Complex Valuable ntr0 ductic0n…………3 1 Analytic functions of one complex variable..4 $1 Representations of complex numbers and elementary operations on complex numbers…4 $2 Complex functions and their derivatives.........7 $3 Analytic functions-being differentiable everywhere in a domain........12 $4 Multi-valued functions and Riemann surfaces.....15 2 Integration of functions of one complex variable................................23 §1 Complex integration……23 $2 Cauchy theorems-the integral characteristic of analytic functions..25 3 Series of functions of one complex variable.32 §1P0 wer series…32 $2 Taylor expansion-the series characteristic of analytic functions.....36 $3 Laurent's expansion and classification of singularities...42 4 Residue theorems and their applications …50 §1 Residue theorems…50 2 Residue theorems'applications to evaluation of definite integrals and series..53 Problems …68 References 044…4004040044404…4444…+44444404…404…79 Equations of Mathematical Physics Introduction:Objects and approaches of study,and
Contents Preface ………………………………………………………………………………………… 1 FunctionTheoryofOneComplexValuable Introduction …………………………………………………………………………………… 3 1Analyticfunctionsofonecomplexvariable………………………………………………… 4 §1 Representationsofcomplexnumbersandelementaryoperations oncomplexnumbers 4 ……………………………………………………………… §2 Complexfunctionsandtheirderivatives 7 ………………………………………… §3 Analyticfunctions—beingdifferentiableeverywhereinadomain 12 …………… §4 MultivaluedfunctionsandRiemannsurfaces 15 ………………………………… 2Integrationoffunctionsofonecomplexvariable ………………………………………… 23 §1 Complexintegration 23 ……………………………………………………………… §2 Cauchytheorems—theintegralcharacteristicofanalyticfunctions 25 ………… 3Seriesoffunctionsofonecomplexvariable ……………………………………………… 32 §1 Powerseries 32 ……………………………………………………………………… §2 Taylorexpansion—theseriescharacteristicofanalyticfunctions 36 …………… §3 Laurentsexpansionandclassificationofsingularities 42 ……………………… 4Residuetheoremsandtheirapplications ………………………………………………… 50 §1 Residuetheorems 50 ………………………………………………………………… §2 Residuetheoremsapplicationstoevaluationofdefiniteintegralsandseries 53 …… Problems ……………………………………………………………………………………… 68 References …………………………………………………………………………………… 79 EquationsofMathematicalPhysics Introduction:Objectsandapproachesofstudy,andterminology ……………………… 83
2 Contents 1 Mathematical models …87 $1 Governing equations 440404404000004044044444444444”0440444”87 §2 Field equations………………93 §3 Solution-fixing conditions…98 $4 Complete mathematical models.Linear systems.Well-posedness .......104 $5 Field operations in terms of orthogonal curvilinear coordinates .........106 2 Method of traveling waves................114 1 Method of traveling waves......114 §2 Extension method………l21 3 Method of discrete spectral 1 Free transverse vibration of a finite string..........................................128 $2 Function spaces and their orthogonal coordinate systems.131 $3 Method of discrete spectral decomposition.................140 4 Generalized functions ………156 §1 definition of generalized functions…l56 $2 Some simple operations on generalized functions.........................163 §3 Limit of generalized functions…l68 $4 derivation and integration of generalized functions …172 $5 Fourier transform of generalized functions..177 $6 Multidimensional generalized functions......183 5 Method of continuous spectral decomposition..188 1 Continuous spatial spectrum......... … 188 2 Continuous temporal spectrum.....203 §3 Continuous spatiotemporal spectrum208 6 Method of impulse decomposition..209 $1 Method of temporal impulse decomposition.............. …209 $2 Method of spatiotemporal decomposition......... …217 $3 Method of spatial impulse decomposition …231 §4 Adjoint operators…234 7Special $1 Special function ordinary differential equations.....249 $2 Power-series solution and invariants of ordinary differential equations of second--order……252
1Mathematicalmodels ……………………………………………………………………… 87 §1 Governingequations 87 …………………………………………………………… §2 Fieldequations 93 …………………………………………………………………… §3 Solutionfixingconditions 98 ……………………………………………………… §4 Completemathematicalmodels.Linearsystems.Wellposedness 104 ………… §5 Fieldoperationsintermsoforthogonalcurvilinearcoordinates 106 …………… 2Methodoftravelingwaves ……………………………………………………………… 114 §1 Methodoftravelingwaves 114 …………………………………………………… §2 Extensionmethod 121 ……………………………………………………………… 3Methodofdiscretespectraldecomposition ……………………………………………… 128 §1 Freetransversevibrationofafinitestring …………………………………… 128 §2 Functionspacesandtheirorthogonalcoordinatesystems 131 ………………… §3 Methodofdiscretespectraldecomposition 140 …………………………………… 4Generalizedfunctions …………………………………………………………………… 156 §1 definitionofgeneralizedfunctions 156 …………………………………………… §2 Somesimpleoperationsongeneralizedfunctions 163 …………………………… §3 Limitofgeneralizedfunctions 168 ………………………………………………… §4 derivationandintegrationofgeneralizedfunctions 172 ………………………… §5 Fouriertransformofgeneralizedfunctions 177 …………………………………… §6 Multidimensionalgeneralizedfunctions 183 ……………………………………… 5Methodofcontinuousspectraldecomposition …………………………………………… 188 §1 Continuousspatialspectrum 188 …………………………………………………… §2 Continuoustemporalspectrum 203 ………………………………………………… §3 Continuousspatiotemporalspectrum 208 ………………………………………… 6Methodofimpulsedecomposition ……………………………………………………… 209 §1 Methodoftemporalimpulsedecomposition 209 ………………………………… §2 Methodofspatiotemporaldecomposition 217 …………………………………… §3 Methodofspatialimpulsedecomposition 231 …………………………………… §4 Adjointoperators 234 ……………………………………………………………… 7Specialfunctions ………………………………………………………………………… 249 §1 Specialfunctionordinarydifferentialequations 249 ……………………………… §2 Powerseriessolutionandinvariantsofordinarydifferential equationsofsecondorder 252 ……………………………………………………… 2 犆狅狀狋犲狀狋狊
Contents 3 3 Representations of special functions ... 268 4 Hypergeometric equation and functions.....276 $5 Generalized hypergeometric equation and §6 Asymptotic expansions..Watson lemma…305 8 Applicati0ns0 f special functi0ns……………3l8 $1 Method of discrete spectral decomposition for regions with curved boundaries …318 $2 Method of spectral decomposition for governing equations with variable coefficients………344 $3 Method of discrete-continuous spectral decomposition for regions with curved boundaries .. …350 $4 Method of impulse decompostition 9 Inverse scattering problems and nonlinear problems.368 $1 Inverse scattering mathematical models...........369 $2 Generalized scattered waves,inverse scattering perturbation theory and method of formal parameter expansion..372 §3Ge'fand-Levitan-Marchenko method……385 §4 Nonlinear mathematical models…396 §5 Hirota transforms..Solitons…403 $6 Backlund transforms.An infinite number of conservation laws...411 $7 Inverse scattering transforms …418 Problems 000040000400000000000000004000050000004400000400040000000000444400004040040000004”425 References…476 Wavelets and Their Applications lntr0 ducti0n…483 Wavelets and their motivation..484 1 Continuous and discrete wavelet transforms..484 §2 Motivation of wavelet transforms…486 2 Continuous wavelet transforms……491 $1 Inverse continuous wavelet transforms in one dimension................491 $2 Continuous wavelet transforms in higher dimensions ……495
§3 Representationsofspecialfunctions 268 ………………………………………… §4 Hypergeometricequationandfunctions 276 ……………………………………… §5 Generalizedhypergeometricequationandfunctions 296 ………………………… §6 Asymptoticexpansions.Watsonlemma 305 ……………………………………… 8Applicationsofspecialfunctions ………………………………………………………… 318 §1 Methodofdiscretespectraldecompositionforregionswith curvedboundaries 318 ……………………………………………………………… §2 Methodofspectraldecompositionforgoverningequations withvariablecoefficients 344 ……………………………………………………… §3 Methodofdiscretecontinuousspectraldecompositionfor regionswithcurvedboundaries 350 ……………………………………………… §4 Methodofimpulsedecompostition 359 …………………………………………… 9Inversescatteringproblemsandnonlinearproblems ………………………………… 368 §1 Inversescatteringmathematicalmodels 369 ……………………………………… §2 Generalizedscatteredwaves,inversescatteringperturbationtheory andmethodofformalparameterexpansion 372 ………………………………… §3 GelfandLevitanMarchenkomethod 385 ………………………………………… §4 Nonlinearmathematicalmodels 396 ……………………………………………… §5 Hirotatransforms.Solitons 403 …………………………………………………… §6 Bcklundtransforms.Aninfinitenumberofconservationlaws 411 …………… §7 Inversescatteringtransforms 418 ………………………………………………… Problems …………………………………………………………………………………… 425 References …………………………………………………………………………………… 476 WaveletsandTheirApplications Introduction ………………………………………………………………………………… 483 1Waveletsandtheirmotivation …………………………………………………………… 484 §1 Continuousanddiscretewavelettransforms 484 ………………………………… §2 Motivationofwavelettransforms 486 …………………………………………… 2Continuouswavelettransforms…………………………………………………………… 491 §1 Inversecontinuouswavelettransformsinonedimension 491 …………………… §2 Continuouswavelettransformsinhigherdimensions 495 ……………………… 犆狅狀狋犲狀狋狊 3