基于QBC主动学习方法建立电信客户信用风险等级评估模型

电信客户信用风险等级评估是对电信客户的信用风险进行等级分类.针对建立客户信用风险等级分类模型时,大量带有类标注数据难以获得的问题,提出了基于主动学习的分类器建模方法,并对基于QBC(委员会投票选择)的主动学习算法进行改进以提高分类器的预测精度.通过对实际电信客户数据进行信用风险等级建模实验,结果表明:应用新算法,分类器使用了较少的带类标签样本数据,达到了与被动学习相同的精度,大大降低了信用专家评估数据的工作量.
文件格式:PDF,文件大小:468.41KB,售价:1.8元
文档详细内容(约5页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录