基于人工免疫的RBF神经网络在钢筋性能预报中的应用

提出了一种基于免疫识别原理的径向基函数神经网络学习算法.该算法利用人工免疫系统的识别、记忆、学习等原理,将输入数据作为抗原,抗体为抗原的压缩映射作为径向基函数神经网络模型的隐层中心,输出采用最小二乘法确定权值.通过预报热轧带肋钢筋力学性能的仿真实验结果表明,与K-均值法选择中心点比较,该算法计算量较小,精度高.
文件格式:PDF,文件大小:383.32KB,售价:1.08元
文档详细内容(约3页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录