第二章连续系统的时域分析 求响应:经典法:已知f(t)、x{0} →全响应y(t)=yr(t)+yx(t) 卷积积分法:先求n(t),已知f(t) →yr(t)=h(t)*f(t) 主要内容 经典法求LTI系统的响应: 齐次解自由响应瞬态 零输入 特解强迫响应稳态(阶跃、周期人零状态 二冲击响应与阶跃响应:(定义、求解方法仍为经典法) 卷积积分:(定义、图示法求卷积) 四卷积积分的性质:
1 第二章 连续系统的时域分析 求响应: 经典法:已知 f(t)、x{0} 全响应 y(t)=yf(t)+yx(t) 卷积积分法:先求 n(t),已知 f(t) yf(t)=h(t) f(t) 主要内容: 一 经典法求 LTI 系统的响应: 齐次解 自由响应 瞬态 零输入 特解 强迫响应 稳态(阶跃、周期) 零状态 二 冲击响应与阶跃响应:(定义、求解方法仍为经典法) 三 卷积积分:(定义、图示法求卷积) 四 卷积积分的性质:
§21LTI系统的响应(经典法) 常系数线性微分方程的经典解 阶:y(m)(t)+ aly 1) =bmf (m)(thbm-1f (m-D(t)+.+b1 f((t)+ bof(t) 全解:y(t=齐次解yt+特解y(t 1齐次解:y()=∑Ce4(形式取决于特征根) 特征方程:A(m)(t)+an1A(m-()+…+a12(t)+a0=0 特征根:决定齐次解的函数形式,表2-1 如为2个单实根1、22, yh (t)=Ce+c2e 如为2重根(+1)2=0,元=-1,yh(t)=Cte+Coet 系数C:求得全解后,由初始条件确定 特解: 函数形式:由激励的函数形式决定,与特征根有关系,表22 如:t)为常数E(), yp(t f(t)=t2, yp(t)=P2t2+ Pit+ Po ft=et,元=-2,不等y(t=Pe f(=e,=-1,相等y(t)=Pteu+pet 系数P:由原微分方程求出 3全解:y()=yt)+yut)=∑ce2+y( 此时利用y(O),y(0),求出系数C
2 §2.1 LTI 系统的响应(经典法) 一 常系数线性微分方程的经典解 n 阶:y (n) (t)+ an-1y (n−1) (t)+…+ a1y (1) (t)+ a0y(t) = bm f (m) (t)+ bm-1 f (m−1) (t)+……+ b 1 f (1) (t)+ b0f(t) 全解:y(t)=齐次解 yh(t)+ 特解 yp(t) 1 齐次解:yh(t)= = n i t e Ci i 1 (形式取决于特征根) 特征方程: (n) (t)+ an-1 (n−1) (t)+… + a1 (t)+ a0=0 特征根:决定齐次解的函数形式,表 2-1 如为 2 个单实根 1、 2, yh(t)=C e t 1 1 + C e t 2 2 如为 2 重根( +1)2=0, = - 1,yh(t)=C1te-t+C0e -t 系数 Ci:求得全解后,由初始条件确定 2 特解: 函数形式:由激励的函数形式决定,与特征根有关系,表 2-2 如:f(t)为常数 (t) , yp(t)=P0 f(t)=t2, yp(t)= P2t 2+ P1t+ P0 f(t)=e-t, = - 2,不等 yp(t)=Pe -t f(t)= e-t, = - 1,相等 yp(t)=P1te-t+P0e -t 系数 Pi:由原微分方程求出 3 全解:y(t)= yh(t)+ yp(t)= = n i t e Ci i 1 + yp(t) 此时利用 y(0),y ‘ (0),求出系数 Ci
例2.1-1:y(t)+5y(t)+6y(t)=ft)ft)=2et,y(0)=2y(0= 解(1)①齐次解:y(t}=Ce2C2e-t 2+5元+6=0,1=-2,12=-3 ②特解:yt=e 设yt)=Pe 代入原方程:Pe艹5(-Pe-)+6Pet=2etPl ⑥全解:y(=C1e2+C2e3u+et dk Ci: y(t-2 C1e-2t-3C2e-3t-e-t 齐次解特解 数学角度 y(t)=3e2-2C2e t≥0 自由响应强迫响应 系统角度 (2)[P44 例2.1-2:y"(t)+5y(t)+6y(=ft)ft=10 cost y(o=2y(0)=0 解:①y(1=C1e2+C2e3 2 yp(t=Pcost+ Qsint=cost+sint=v2 cos(t-4) yp"(t)、yp(t)、yp(t)代入方程,求得P=Q=1 ③y(Ce2+Cea+2cos(tz) 由初始条件可解得C1=2,C2= y(t)=2e2-C2e+√2cos(t)t≥ 0
3 例 2.1-1: y‘‘(t)+ 5y‘ (t)+ 6y(t)= f(t) f(t)= 2e-t,y(0)= 2 y‘ (0)= -1 解:(1) ○1 齐次解: yh(t)= C1e -2t+C2e -3t 2+5 +6 = 0, 1= - 2, 2= - 3 ○2 特解:yp(t)= e -t 设 yp(t)= Pe-t 代入原方程:Pe-t+5(- Pe-t )+6 Pe-t = 2e-t P=1 ○3 全解:y(t)= C1e -2t+C2e -3t+ e -t 求 Ci:y ‘ (t)= - 2 C1e -2t - 3C2e -3t - e -t 齐次解 特解 数学角度 y(t)= 3e-2t - 2C2e -3t + e -t t≥0 自由响应 强迫响应 系统角度 (2) [P44] 例 2.1-2: y‘’(t)+ 5y‘ (t)+ 6y(t)= f(t) f(t)=10cost y(0)= 2 y‘ (0)= 0 解: ○1 yh(t)= C1e -2t + C2e -3t ○2 yp(t)= Pcost+Qsint=cost+sint= 2 cos(t- 4 ) yp ‘‘(t)、yp ‘ (t)、yp(t)代入方程,求得 P=Q=1 ○3 y(t)= C1e -2t + C2e -3t + 2 cos(t- 4 ) 由初始条件可解得 C1=2,C2 = - 1 y(t)=2e-2t - C2e -3t + 2 cos(t- 4 ) t≥0
二关于0和0初始值 若ft)在t=0时接入系统,方程的解适用t≥0 求解的初始条件:严格是指=0时刻的值,y(0+)、y(0+)… 已知系统初始状态:t=0.时,激励未接入,y(0)、y(o.)…,反映 系统的历史情况 求解微分方程时,要先从y0)-求出→y(0) 例21-3:y"(t)+3y(t)+2y(t)=2f(t)+6ft) 已知:ft=(),y(0)=2,y(0=0, 求:y(0+)、y(+) 解:y“(t)+3y(+2y(=2(1)+6E(1) Jo y"(t)dt+ 3 Jo y(t)dt+2 Jo,y(tdt =2o()dt+6()dt y(0)y(0.)+3[y(0+}y(0.)+2×0=2×1+6×0 y(t)在t=0是连续的→y(0+)=y(0.)=2 y(t)在t=0是跃变的→y(0+)=y(0)+2=2 结论:当方程右端含有6()及δ()(1)函数时,y0)及各阶导数有些 将发生跃变 当方程右端不含有O(t)及An()函数时,y(及各阶导数 一般不发生跃变,可直接等
4 二 关于 0-和 0+初始值 若 f(t)在 t=0 时接入系统,方程的解适用 t≥0 求解的初始条件:严格是指 t=0+时刻的值,y(0+)、y ‘ (0+)… 已知系统初始状态:t=0-时,激励未接入,y(0-)、y ‘ (0-)…,反映 系统的历史情况。 求解微分方程时,要先从 y i (0-) ⎯⎯⎯→ 求出 y i (0+) 例 2.1-3: y‘‘(t)+3y ‘ (t)+2y(t)=2 f ‘ (t)+6 f(t) 已知:f(t)= (t) ,y(0-)=2 ,y ‘ (0-)=0, 求: y(0+)、y ‘ (0+) 解:y ‘‘(t)+3y‘ (t)+2y (t)=2 (t) +6 (t) + − 0 0 y ‘‘(t)dt + 3 + − 0 0 y ‘ (t)dt + 2 + − 0 0 y(t)dt =2 + − 0 0 (t) dt + 6 + − 0 0 (t) dt [y‘ (0+)- y ‘ (0-)] + 3 [y(0+)- y(0-)] + 2×0 = 2×1 + 6×0 y(t)在 t =0 是连续的 y(0+)=y(0-)=2 y ‘ (t)在 t =0 是跃变的 y ‘ (0+)=y‘ (0-)+2=2 结论:当方程右端含有 (t) 及 ( ) ( ) t n 函数时,y(t)及各阶导数有些 将发生跃变; 当方程右端不含有 (t) 及 ( ) ( ) t n 函数时,y(t)及各阶导数 一般不发生跃变,可直接等
三零输入响应和零状态响应 y(1)=y4()+y()=∑cxe41+∑cn4+yut)=∑cel+y() 初始值:y(0)=yxO)(0)+y0(0) D)(0-)=yxO)(0+)+yf0)(0+) 对零状态响应:y((0)=0yx0)(0.)=y0)(0) 对零输入响应由于f(t)=0,故yO(0+)=yO(0=y0(0) 1经典法求y(和yt) 例21-4y"(t)+3y(t)+2y(t)=2f(t)+6ft) 已知:ft=(),y0=2,y(0=0 解:①求y(t)即ft)=0 满足yx"(t)+3yx(t)+2yt=0,且满足y(O)的解 初始值:yx(0-)=y0)=y(0)=2 yx(0+)yx(0.)=y(0=0 响应形式:yt)=Cxe+Cxe2)→「Cxn+Cx=2 yx(tF-CxIe-L2Cx2e-2t -Cx1-2Cx=0 Cx1=4 ∴yst)=4e12e2=4e2e2]·E() ①求yt)ft)=E(),初始状态为零 满足:yr"(t)+3yr(t)+2y(t)=26(0)+6(1)且yr(0)=y40)=0 同前可求得y(O+)=y0)=0 (0+)=2+yr(0.)2
5 三 零输入响应和零状态响应 y(t) = yx(t) + yf(t) = = n i t e Cxi i 1 + = n i t e C fi i 1 + yp(t)= = n i t e Ci i 1 + yp(t) 初始值: y ( j) (0-) = yx ( j) (0-) + yf ( j) (0-) y ( j) (0+) = yx ( j) (0+) + yf ( j) (0+) 对零状态响应: yf ( j) (0-)=0 yx ( j) (0-)= y ( j) (0-) 对零输入响应:由于 f(t)=0,故: yx ( j) (0+)= yx ( j) (0-)= y ( j) (0-) 1 经典法求 yx(t) 和 yf(t) 例 2.1-4: y ‘‘ (t) + 3y‘ (t)+2 y(t)=2 f‘ (t)+6 f(t) 已知:f(t)= (t) ,y(0-)=2 ,y ‘ (0-)=0 解:○1 求 yx(t) 即 f(t)=0 满足 yx ‘‘(t) + 3yx ‘ (t)+2 yx(t)=0,且满足 y ‘ (0+)的解 初始值: yx(0+)=yx(0-)= y (0-)=2 yx ‘ (0+)=yx ‘ (0-)= y‘ (0-)=0 响应形式:yx(t)= Cx1e -t+Cx2e -2t Cx1 +Cx2=2 yx ‘ (t)= -Cx1e -t -2Cx2e -2t -Cx1 -2Cx2=0 Cx1 =4 Cx2 =-2 ∴yx(t)= 4e-t -2e-2t=[4e-t -2e-2t]· (t) ○2 求 yf(t) f(t)= (t),初始状态为零 满足: yf ‘‘(t) + 3yf ‘ (t)+2 yf(t)=2 (t) +6 (t) 且 yf ‘ (0-)=yf(0-)=0 同前可求得: yf(0+)=yf(0-)=0 yf ‘ (0+)=2+yf ‘ (0-)=2