免费下载网址htt: jiaoxuesu. ysl68c0m/ (a.1/2a2),它在向右平移1个单位后,P的象点Q的坐标是什么? (2)小组合作讨论交流.把P点的横坐标a加上1,纵坐标1/2a2不变, 就得到象 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (a.1/2a2 ),它在向右平移1个单位后,P的象点Q 的坐标是什么? (2)小组合作讨论交流.把P点的横坐标a加上1,纵坐标1/2a 2不变, 就得到象
免费下载网址htt: jiaoxuesu. ysl68c0m/ 点Q的坐标为(a+1,1/2a2).设b=a+1,则a=b-1,从而点Q的坐标 为(b,1/2(b-1)2)。所以抛物线F是二次函数y=1/2(x-1) 的图象.它的顶点是(1,0),它的对称轴是过点O′(1,0)且平 行于y轴的直线I′,直线′为x=1,抛物线y=1/2(x-1)2的 开口向上 由此引导学生归纳出函数y=a(x-h)2的图象性质: 函数y=a(x-h)2的图象是抛物线,它的对称轴是直线x=h,它的顶点 坐标是(h,0).当a>0时,抛物线开口向上;当a<0时,开口向下 (三)讲解例题 例。教科书P.32例3 分析:先找出顶点坐标和对称轴,再列表、描点、连线画出二次函数图 象在对称轴右边的部分,最后利用对称性画出对称轴左边的部分 (四)应用新知 学生随堂练习,教科书P.33练习题第1,2题 做完后,放投影上显示,集体评价交流,指出优劣,互相帮助,共同提高. (五)课堂小结 1.抛物线沿ⅹ轴左右平移,实际上只改变了顶点横坐标,纵坐标不变 2.如何作y=a(x-h)2(a≠0)的图象? (六)思考与拓展 让学生自主探索,小组交流讨论,教师引导点拨,解决以下问题. 1.抛物线y=1/2x2向左平移1个单位后,得到抛物线y=1/2(x +1)2,如果将抛物线y=1/2x2向右平移1个单位后,又是怎样的抛 物线呢? 2.(1)抛物线y=2(x-5)2向左平移3个单位后得到的抛物线是 (2)抛物线y=2(x-5)2向右平移4个单位后得到的抛物线是 布置作业 1.填空.(1)抛物线y=2x2与y=-2x2关于x轴对称 (2)抛物线y=-1/2(x+1)2向右平移3个单位后,得到的抛物 线是y (3)抛物线y=-1/3(x+2)2开口向下,顶点坐标是(-2,0), 对称轴是直线x=-2,当x>-2时,y随x的增大而减小 2.选择题.(1)比较y=3x2和y=-3x的图象的不同之处是() A。对称轴B。顶点坐标C.开口方向D.开口大小 (2)对于抛物线y=a(x-h)2(a≠0),下列叙述正确的是() Aa越大开口越大Ba越大开口越小C|a|越大开口越大D|a|越大 开口越小 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 点Q的坐标为(a+1,1/2a2 ). 设b=a+1,则a=b-1,从而点Q的坐标 为(b,1/2(b-1) 2 )。所以抛物线F是二次函数y=1/2(x - 1) 2 的图象. 它的顶点是(1,0),它的对称轴是过点O′(1,0)且平 行于y轴的直线l′,直线l′为x=1,抛物线y=1/2(x-1) 2 的 开口向上. 由此引导学生归纳出函数y=a(x-h)2的图象性质: 函数y=a(x-h)2的图象是抛物线,它的对称轴是直线x=h,它的顶点 坐标是(h,0).当a>0时,抛物线开口向上;当a<0时,开口向下. (三)讲解例题 例。教科书P.32 例3. 分析:先找出顶点坐标和对称轴,再列表、描点、连线画出二次函数图 象在对称轴右边的部分,最后利用对称性画出对称轴左边的部分. (四)应用新知 学生随堂练习,教科书P.33练习题第1,2题. 做完后,放投影上显示,集体评价交流,指出优劣,互相帮助,共同提高. (五)课堂小结 1.抛物线沿x轴左右平移,实际上只改变了顶点横坐标,纵坐标不变. 2.如何作y=a(x-h)2(a≠0)的图象? (六)思考与拓展 让学生自主探索,小组交流讨论,教师引导点拨,解决以下问题. 1.抛物线y=1/2x2 向左平移1个单位后,得到抛物线y=1/2(x +1) 2 ,如果将抛物线y=1/2x 2向右平移1个单位后,又是怎样的抛 物线呢? 2.(1)抛物线y=2(x-5) 2 向左平移3个单位后得到的抛物线是 . (2)抛物线y=2(x-5)2 向右平移4个单位后得到的抛物线是 . 布置作业 1.填空.(1)抛物线y=2x2 与y=-2x2 关于x轴对称. (2)抛物线y=-1/2(x+1) 2 向右平移3个单位后,得到的抛物 线是y=-1/2(x-2) 2 . (3)抛物线y=-1/3(x+2)2 开口向下,顶点坐标是(- 2,0), 对称轴是直线x=-2,当x>-2时,y 随x 的增大而减小. 2.选择题.(1)比较y=3x2和y=-3x2的图象的不同之处是( ) A。对称轴 B。顶点坐标 C.开口方向 D. 开口大小 (2)对于抛物线y=a(x- h)2(a≠0),下列叙述正确的是( ) Aa越大开口越大Ba越大开口越小C|a|越大开口越大D|a|越大 开口越小
免费下载网址htt: jiaoxuesu. ysl68c0m/ 课后反思 编写时间20年月日执行时间20年月日 总序第14 个教案 2.2二次函数的图象与性质(四) 共_5课时|课 新授 教1.理解y=a(x+h)的图象与y=a(x-h)+k的图象的关系 学2.能说出抛物线y=a(x-h)2+k的对称轴,顶点坐标和开口方向 目|3.让学生经历y=a(x+h)+k的性质的探究过程,理解二次函数图象性质 重|重点:探索二次函数y=a(x-h)2+k的图象的性质以及画二次函数y=a(x-h)2+k的图象 占 难难点:理解y=a(x-h)2与y=a(x-h)2+k的图象之间的关 探究、练习 教学活动 课前、课中反思 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 课 后 反 思 编写时间 20 年 月 日 执行时间 20 年 月 日。 总序第 14 个教案 课 题 2.2 二次函数的图象与性质(四) 共 5 课时 第 4 课时 课 型 新 授 教 学 目 标 1.理解y=a(x-h)2的图象与y=a(x-h)2 +k的图象的关系. 2.能说出抛物线y=a(x-h)2 +k的对称轴,顶点坐标和开口方向. 3.让学生经历y=a(x-h)2 +k 的性质的探究过程,理解二次函数图象性质. 重 点 难 点 重点:探索二次函数y=a(x-h)2 +k的图象的性质以及画二次函数y=a(x-h)2 +k 的图象. 难点:理解y=a(x-h)2 与y=a(x-h)2 +k 的图象之间的关 教 学 策 略 探究、练习 教 学 活 动 课前、课中反思
免费下载网址htt: jiaoxuesu. ysl68c0m/ )复习引入 1.填空 (1)抛物线y=1/2x2的顶点是,对称轴是_,开口向 (2)抛物线y=1/2(x+1)2的顶点是 对称轴是,开口 向 2.说一说,下列函数是将抛物线y=2x2经过怎样的平移得到的? (1)y=2(x+3) (2)y=2x-1) 3.引入:将抛物线y=1/2(x+1)2经过怎样的平移可以得到抛物线y1/2 (x+1)2-3? (二)探究新知 1.理解抛物线y=1/2(x+1)2与抛物线y=1/2(x+1)2-3的平移关系 1)引导学生完成下表 二次函数 图象上的点 横坐标 纵坐标 y=1/2(x+1) y=1/2(x+1)2- (2)指导学生观察上表中两个函数,当图象上的点的横坐标相同时,纵坐 标相差3。从 而理解由抛物线y=/2(x+1)向下平移3个单位后,就得到抛物线y=1/2 (x+1)2-3.它的对称轴是直线x=-1,顶点坐标为(-1,-3) 2.探索y=a(x-h)2+k的图象性质 用观察比较的方法得到y=a(x-h)2+k的图象性质: 函数y=a(x-h)2+k的图象是抛物线,它的对称轴是直线x=h,它的顶点坐 标是(h,k).当a>0时,抛物线开口向上;当a<0时,开口向下 3.探索y=a(x-h)2+k的图象画法 (1)师生共同探讨:讨论从图形平移入手,抛物线平移不改变形状和开口 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (一)复习引入 1.填空. (1)抛物线y=1/2x2的顶点是____,对称轴是___,开口向_____. (2)抛物线y=1/2(x+1) 2的顶点是_____,对称轴是_____,开口 向_____. 2.说一说,下列函数是将抛物线y=2x2经过怎样的平移得到的? (1)y=2(x+3)2; (2)y=2x-1)2. 3.引入:将抛物线y=1/2(x+1)2经过怎样的平移可以得到抛物线y1/2 (x+1)2-3? (二)探究新知 1.理解抛物线y=1/2(x+1) 2与抛物线y=1/2(x+1) 2 -3 的平移关系. (1)引导学生完成下表. 二次函数 图象上的点 横坐标 纵坐标 y=1/2(x+1)2 a y=1/2(x+1) 2 -3 a (2)指导学生观察上表中两个函数,当图象上的点的横坐标相同时,纵坐 标相差3。从 而理解由抛物线y=1/2(x+1)2向下平移3 个单位后,就得到抛物线y=1/2 (x+1) 2 -3. 它的对称轴是直线x=-1,顶点坐标为(-1,-3). 2.探索y=a(x-h)2 +k的图象性质. 用观察比较的方法得到y=a(x-h)2 +k的图象性质: 函数y=a(x-h)2 +k的图象是抛物线,它的对称轴是直线x=h,它的顶点坐 标是(h,k). 当a>0时,抛物线开口向上;当a<0时,开口向下. 3.探索y=a(x-h)2 +k的图象画法. (1)师生共同探讨:讨论从图形平移入手,抛物线平移不改变形状和开口
免费下载网址htt: jiaoxuesu. ysl68c0m/ 方向,只改变顶点坐标.因此,要画抛物线,先必须找出顶点坐标和对称轴 (2)师生共同归纳概括图象画法的步骤 第一步.写出对称轴和顶点坐标,并且在平面直角坐标系内画出对称轴,描 出顶点 第二步.列表(自变量ⅹ从顶点横坐标开始取值),描点和连线,画出图象 在对称轴右边的部分 第三步.利用对称性,画出图象在对称轴左边的部分. (三)讲解例题 例.教科书P.34例4 分析:按画二次函数y=a(x-h)2+k的图象的三个步骤进行 (四)应用新知 教科书P.35练习第1,2题.学生独立完成后,抽样放投影上进行集 体讲评修正. (五)课堂小结 1.抛物线沿ⅹ轴左右平移,只改变顶点的横坐标;沿y轴上下平移,只改 变顶点的纵坐标.即 y≡ax2沿x轴平移」h』个单位→y=a(x-h)沿γ轴平移k|个单位 h>0向右,h<0向左 k>0向上,k<0向下 2.说出下列二次函数图象的顶点坐标、对称轴 (1)y=ax2+c(2)y=a(x+m):(3)y=a(x-h)2+k+1 布置作业 (1)将抛物线y=x2向左平移2个单位后,再向上平移2个单位所得到 的抛物线是 A B)y=(x+2)2-2 C)y=(x+2)2+2 )y=(x-2)2+2 (2)将抛物线y=-12(x+1)2+4向右平移3个单位后,再向下 平移5个单位所得到的抛物线是() (3)抛物线y=a(x+2)2与抛物线y=-2.5(x-h)2的开口方向 和形状相同,只是位置不同,则a、h的值分别是() A)a=-2.5,h=2 B)a=2.5,h=2: 2.5,h 2;D)a=2.5,h (4)函数y=-3(x-2)2+4.它的图象开口向 顶点坐标是 ,对称轴是直线 时,y随x的增大而增大,当x 时y随x的增大而减小,当ⅹ 时,y有最 值是 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 方向,只改变顶点坐标.因此,要画抛物线,先必须找出顶点坐标和对称轴. (2)师生共同归纳概括图象画法的步骤. 第一步.写出对称轴和顶点坐标,并且在平面直角坐标系内画出对称轴,描 出顶点. 第二步.列表(自变量x从顶点横坐标开始取值),描点和连线,画出图象 在对称轴右边的部分. 第三步.利用对称性,画出图象在对称轴左边的部分. (三)讲解例题 例. 教科书P.34 例4. 分析:按画二次函数y=a(x-h)2 +k的图象的三个步骤进行. (四)应用新知 教科书P.35 练习第1,2 题. 学生独立完成后,抽样放投影上进行集 体讲评修正. (五)课堂小结 1.抛物线沿x轴左右平移,只改变顶点的横坐标;沿y轴上下平移,只改 变顶点的纵坐标.即 y=ax 2沿x轴平移|h|个单位→y=a(x-h)2沿y轴平移|k|个单位→ h>0向右,h<0向左 k>0向上,k<0向下 y=a(x-h)2 +k 2.说出下列二次函数图象的顶点坐标、对称轴. (1)y=ax 2 +c (2)y=a(x+m)2; (3)y=a(x-h)2 +k+1 布置作业 (1)将抛物线y=x2向左平移2个单位后,再向上平移2个单位所得到 的抛物线是( ) A) y=x2+2 B) y=(x +2)2-2 C) y=(x+2)2+2 D) y=(x-2)2+2 (2)将抛物线y=-12(x+1)2+4向右平移3个单位后,再向下 平移5个单位所得到的抛物线是( ) (3)抛物线y=a(x+2) 2与抛物线y=-2.5(x-h) 2的开口方向 和形状相同,只是位置不同,则a、h 的值分别是( ) A)a=-2.5,h=2; B)a=2.5,h=2; C)a=-2.5,h=-2; D)a=2.5,h= -2. (4)函数y=-3(x-2)2+4.它的图象开口向____,顶点坐标是 ______,对称轴是直线______,当x______时,y随x的增大而增大,当x ______时y随x的增大而减小,当x______时,y有最______值是_______.