sL Li, (0) (0) R sC uS →i2() →>(s) V2(s)=R2()a2(S) 2(s)= SLl()-Li,(o) l(s)+-ac2(0) SL R SC →2(s) →>i2(S) ① VR(S=VR(S R (0) CV(0) S l(s)+-1(0)sc2(s)-c2(0)
SL (0) 1 l i s R + R − SL (0 ) − Lil SC 1 (0) 1 Vc s (0 ) − CVc SC 1 V (s) RI (s) R = R ( ) 1 ( ) V s R V s R = R ( ) (0 ) ( ) − − = L L L sLI s Li u s (0 ) 1 ( ) 1 ( ) − + = L L L i s u s sl I s (0 ) 1 ( ) 1 ( ) − + = c c c u s I s sc u s ( ) (0 ) ( ) − − = c c c scu s cu I s i (s) → L i (s) − + → c + − i (s) → L i (s) → c i (s) → R i (s) → R
2电路基本定理的算形式- kirchhoftis定律 KIL 对于假意的节点,在同一时入锾节点的 电流代数和恒等于零即∑1()=0→∑(s)=0 KVL 沿任意图合回路,各段电瓜的代飘和恒等 子零,即∑0=0→∑()=0
2.电路基本定理的运算形式-kirchhoftis定律 K.I.L 对于任意的节点,在同一时刻流入该节点的 电流代数和恒等于零即 i(t) = 0 →I(s) = 0 K.V.L 沿任意闭合回路,各段电压的代数和恒等 于零,即 u(t) = 0 →V(s) = 0