(s+2)u1(S)-2(s)= 入x人 41(s)+4(s+1)ul2(s) s+2 写誠矩阵形式 (S+2) 入x人 4s4(s+1)2(s) s+2
2 4 ( ) 4( 1) ( ) 4 1 1 ( 2) ( ) ( ) 1 2 1 2 2 + − + + = + − = + s s su s s u s s s u s u s + + = − + + − 2 4 1 1 ( ) ( ) 4 4( 1) ( 2) 1 2 2 1 s s s u s u s s s s 写成矩阵形式
求出方程的解1 (s) 2 s(S+1) 3求推氏递变换 l2()=L[2(S)=[-esin(t)]() 2
求出方程的解 ( 1) 1 2 1 1 ( ) 2 2 + + = − s S u s 3.求拉氏逆变换 sin( )] ( ) 2 1 ( ) [ ( )] [ 2 1 2 u t L u s e t u t − −t = = −
p251.4-6 解:开吴打开后电路程为: E R L-,+Ri(t)=0 L[/()-1(0)+RI(s)=0 所以/(s) i(0) v/()=R()+E R S R越大,波形在=0 k,开关打开瞬间的幅值 i()=L[I(s)=i(0)e1 越大,且波形裹减越惧 E E R 由题意知:(0)==i(t)
p251.4 − 6 R L r + − s + − ( ) 0 ( ) + Ri t = dt di t L 解:开关打开后电路方程为: E [ ( ) − (0 )]+ ( ) = 0 − L sI s i RI s t L R i t L I s i e L R s i I s − − − − = = + = ( ) [ ( )] (0 ) (0 ) ( ) 1 所以 t L R e r E i t r E i − − 由题意知:(0 ) = ( ) = vr (t) = Ri(t) + E 越大,且波形衰减越快 开关打开瞬间的幅值 R越大,波形在t = 0 v (t) r
三用 laplace变换法分析电路 1S城的元件模型 RLC元件的时城关系苟: (t)=R·2(t) (0)=(t) L 2()=-(z)dz+l2(0) q 各式进行拉氏变换得:
三.用laplace变换法分析电路 1.S域的元件模型 R.L.C元件的时域关系为: u q i d u c c V t i L dt di t V t L V t R I t t c L c L L R R = + = = = = − 0 ( ) (0 ) 1 ( ) ( ) ( ) ( ) ( ) 各式进行拉氏变换得:
R(=RIR(S) l2(s)=SL/1()-L(0) ()=-l(s)+-2(0) SC 对电流解出得:(p201.圈4-11和圈4-12) (s域元件模型) 2(s)=VR(S) R 1(s)=-L2()+-i(0) (s)=scl2(s)-cl2(0)
(0 ) 1 ( ) 1 ( ) ( ) ( ) (0 ) ( ) ( ) − − = + = − = c c c L L R R u s I s sc u s u s sLI s Li v s RI s 对电流解出得: ( ) ( ) (0 ) (0 ) 1 ( ) 1 ( ) ( ) 1 ( ) − − = − = + = c c c L L L R R I s scu s cu i s u s sL I s V s R I s (p201.图4-11和图4-12) ( s域元件模型)