第n次分叉: 丰周长为=ym=12 面积为 n=An-1+3{4"I(”A1lB =A,+3 +3·4 34+…+3.42()y4 9 9 =A1{1+[+ +()2+…+(m)21 339′39 39 n=2,3 圆[回 上页
) 1,2, 3 4 ( 1 1 = = − P P n n n ) ]} 9 1 3{4 [( 1 2 1 A A 1 A n n n n − − = − + 1 2 1 1 2 1 1 ) 9 1 ) 3 4 ( 9 1 3 4 ( 9 1 A 3 A A A n− n− = + + ++ n = 2,3, 周长为 面积为 ) ]} 9 4 ( 3 1 ) 9 4 ( 3 1 ) 9 4 ( 3 1 3 1 {1 [ 2 2 1 − = + + + + + n A 第 n 次分叉:
于是有 limP=oo n→0 1 lim A =A,(1+ 3 3、23 n n→0 4=4(1+5)=5 9 雪花的面积存在极限(收敛) 结论:雪花的周长是无界的,而面积有界 上页
于是有 = → n n lim P ) 9 4 1 3 1 lim 1 (1 − = + → An A n . 5 2 3 ) 5 3 = A1 (1+ = 结论:雪花的周长是无界的,而面积有界. 雪花的面积存在极限(收敛).
庄例1讨论等比级数(几何级数 ∑q"=a+aq+mq2+…+mq"+…(a≠0) n=0 的收敛性 解如果q≠时 S,=a+mq+aq2+…+1 1-q1-q1-q 上页
例 1 讨论等比级数(几何级数) = + + ++ + = n n n aq a aq aq aq 2 0 (a 0) 的收敛性. 解 如果q 1时 2 −1 = + + + + n sn a aq aq aq q a aqn − − = 1 , 1 1 q aq q a n − − − =
当q<时,Iimq"=0:mmSn=1收敛 q 当q>时,limq"=a:ims=发散 如果q=时 当q=时,Sn=m→发散 工工工 当q=-1时,级数变为a-a+a-a+… lms不存在 发散 综上∑ n当q<时收敛 0当q≥时,发散 上页
当 q 1 时 , lim = 0 → n n q q a s n n − = → 1 lim 当 q 1 时 , = → n n lim q = → n n lim s 收敛 发散 如果 q = 1 时 当 q = 1 时 , 当 q = − 1 时, sn = na → 发散 级数变为a − a + a − a + n不存在 n s → lim 发散 综上 = 当 时 发散 当 时 收敛 1 , 1 , 0 qq aq n n
例2判别无穷级数 十∴十 +…的收敛性 1.33·5 (2n-1)·(2n+1) 1 解 (2n-1)(2n+1)22n-12n+ 十 ∴十 n1.33.5 (2n-1)·(2n+1) 111 11 = )+…+ 23′235 22n-12n+1 上页
例 2 判别无穷级数 + − + + + + (2 1) (2 1) 1 3 5 1 1 3 1 n n 的收敛性. 解 (2 1)(2 1) 1 − + = n n un ), 2 1 1 2 1 1 ( 2 1 + − − = n n (2 1) (2 1) 1 3 5 1 1 3 1 − + + + + = n n sn ) 2 1 1 2 1 1 ( 2 1 ) 5 1 3 1 ( 2 1 ) 3 1 (1 2 1 + − − = − + − + + n n