4.4 Differential Equation of linear momentum Newton’ s second law F=ma=pdxdydz Rodxdvdz Elemental volume =(Xi+yj+Zk)pdxdydz What are the surface forces Fs on the elemental volume?
11 Newton’s second law dV dxdydz dt = b s dV dxdydz F F dt = + F R dxdydz b = = + + ( ) Xi Yj Zk dxdydz 4.4 Differential Equation of Linear Momentum dx dz dy Elemental volume F ma = What are the surface forces Fs on the elemental volume?
Surface force on an elemental volume: for the two surfaces⊥x aP Prydz OX P Surface stress P aP d (P+-dx)dydz dx ax Vector sum aP aP aP for the two surfaces⊥y, ydxdvdz z ap aP aP Net Surface force: F=(x++一) dxdy ay a 12
12 Surface force on an elemental volume: for the two surfaces x ⊥ P dydz x ( ) x x P P dx dydz x + dx dz dy P x x x P P dx x + Vector Sum P x dxdydz x P x Surface stress for the two surfaces y z , ⊥ P y dxdydz y P z dxdydz z Net Surface Force: ( ) x y z s P P P F dxdydz x y z = + +
It is not these stresses but their gradient, which cause a net force on the differential volume ap ap. aP p-dxdydz=pRdxdydz+(x++)dxdydz dt OX aP R+ Momentum equation dt x=Xxi+TJ+tk In the like manner P=τ,i+rj+τ,k P=t i+t,j+tk 13
13 ( ) x y z dV P P P dxdydz Rdxdydz dxdydz dt x y z = + + + 1 [ ]i i dV P R dt x = + Momentum equation P i j k x xx xy xz = + + P i j k y yx yy yz = + + P i j k z zx zy zz = + + In the like manner xx xy xz P x It is not these stresses but their gradient, which cause a net force on the differential volume
XXx Tensor张量 T ≠ 6 0r0 F=C++)+( ax a atat at ax ay a au 7,0r =X+-( ax ay az dt
14 [( ) ( ) xx zx yx xy yy zy F i j s x y z x y z = + + + + + ( ) ] xz yz zz k dxdydz x y z + + + ij ji = i j xx xy xz yx yy yz zx zy zz ij 6 Tensor 张量 1 ( ) du xx zx yx X dt x y z = + + + ... ... dv dw dt dt = =
l aC =X1+-() Momentum equation(角标表示法) Constitutive Relation本构 Newton'sLaw(广义牛顿内摩擦定律) u(vv)si-P8 ou + 2 ax. a 0 i≠J 15
15 Constitutive Relation 本构 ~ i ij j u x w du dy = Newton’s Law (广义牛顿内摩擦定律) 2 2 ( ) 3 ij ij ij ij = − − S V P 1 ( ) 2 j i ij j i u u S x x = + ij = 1 0 i j i j = 1 ( ) ji i i j du X dt x = + Momentum equation(角标表示法) xy u y =