Summarization of Chapter 1 大 Continuum连续介质 Some Properties of fluids(流体的性质) viscosity(粘性 Definition(定义) The nature of viscosity(物理 Newtonian law of viscosity(牛顿内摩擦定律)
Summarization of Chapter 1 * Continuum 连续介质 * Some Properties of fluids(流体的性质) viscosity(粘性) Definition (定义) The nature of viscosity ( 物 理 ) Newtonian law of viscosity (牛顿内摩擦定律)
two different points of view in analyzing problems in mechanics The Eulerian view(欧拉观点 and the lagrangian view(拉格朗日观点) flow classification Stream line(流线) Pathline(迹线)& Flowfield 〔流场)流线方程,计算流谱 Surface force(表面力) and body force(质量力,体积力)
* Two different points of view in analyzing problems in mechanics The Eulerian view (欧拉观点)and the Lagrangian view (拉格朗日观点) * Flow classification * Streamline(流线),Pathline(迹线) & Flowfield (流场) 流线方程,计算流谱 * Surface force(表面力) and body force(质量力,体积力)
Summarization of Chapter 2 x Pressure Vertical to the surface and point into it At any point, pressure is independent of orientation * Equilibrium of a fluid element(流体静平衡) Vp= pR Equipressure surface(等压面) Pressure Distribution under Gravity(重力作用下的静压) Fluid in rigid body motion(加速运动流体平衡)
Summarization of Chapter 2 * Pressure Vertical to the surface and point into it. At any point, pressure is independent of orientation. * Equilibrium of a Fluid Element (流体静平衡) p R = Equipressure surface(等压面) Pressure Distribution under Gravity(重力作用下的静压) Fluid in rigid body motion(加速运动流体平衡)
Summarization of Chapter 3 Systems(体系) Control volumes(控制体) *RTT(雷诺输运定律) (D (pADout-cBoavin t 2 tt+d dp: any property of fluid(m, mv, H,e) dΦ dm The amount of p per unit mass Steady 1-d only in inlets and outlets
Summarization of Chapter 3 * Systems (体系) Control Volumes (控制体) * * RTT (雷诺输运定律 ) t+d t t+d t t t s ( ) ( ) s out in d AV AV dt = − : any property of fluid ( , , , ) m mV H E d dm = :The amount of per unit mass Steady , 1-D only in inlets and outlets
φ-mβ=dm/dm=1 ∑(nA1)m=∑(P,A1)m∑(m)m=(m)om Conservation of mass(质量守恒)( Continuity Equation) φ-mVβ=d(mV/dm=Ⅴ Fx= ri(v2x-vix) ∑ am m(out-v dt 2 2-out 1-in The Linear Momentum Equation(动量方程) Newton's Second Law Coordinate Control Volume
f=m =dm/dm=1 ( ) ( ) out in i i i i i i i i AV V = A ( ) ( ) i in i out i i m m = Conservation of mass (质量守恒) (Continuity Equation) f=mV =d(mV)/dm=V ) ( ) ( s out in d mV F m V V dt = = − 2-out, 1- in F m V V x x x = − ( ) 2 1 F m V V y y y = − ( ) 2 1 F m V V z z z = − ( ) 2 1 o x y z The Linear Momentum Equation (动量方程) ( Newton’s Second Law ) * Coordinate , Control Volume