学 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量一动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 §14-1力的功 力的功是力沿路程累积效应的度量。 常力的功 W=FS a Mi M M2 =F S 力的功是代数量。a<z时,正功;a=x时功为零;a>时负功。 单位:焦耳(J);1J=1Nm
6 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量—动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 § 14-1 力的功 力的功是力沿路程累积效应的度量。 F S W FS = = cos 力的功是代数量。 时,正功; 时,功为零; 时,负功。 单位:焦耳(J); 2 2 = 2 1J=1N1m 一.常力的功
Dynamics 2. Work done by a variable force: 2 Elementary work ]w=Fcosads =Fd=F·cr Xdx+ydy+zd Myar (F=Xi +yj+Zk, dr=dxi +dv+dck Fdr= Xdx+Yay+ld)x The total work done by a force F during a finite curvilinear displacement M, M2is W=∫ Fcosads=∫Fds M (expression in the natural form) =∫Fb (vector expression) M =「Xax+1hy+z (expression in terms of rectangula lar coordinates) 7
7 2. Work done by a variable force: W =Fcosds F ds = = F dr = Xdx +Ydy + Zdz (F = Xi +Yj + Zk ,dr = dxi + dyj + dzk F dr = Xdx+Ydy + Zdz) Elementary work The total work done by a force during a finite curvilinear displacement is . F M1 M2 = = 2 1 2 1 cos M M M M W F ds F ds (expression in the natural form) = 2 1 M M F dr (vector expression) = + + 2 1 M M Xdx Ydy Zdz (expression in terms of rectangular coordinates)
学 二,变力的功 元功:W= Cosas -fds F·c ar Xdx+dv+zd (F=Xi+yj+Zk, dr=dxi+dv +dck F dr= Xdx+Yay+zdz 力F在曲线路程MM,中作功为 M W=∫ Fcosads=∫Fs(自然形式表达式) MI M F dr (矢量式) =「Xx+hy+Zh(直角坐标表达式) 8 M
8 二.变力的功 F ds = = F dr = Xdx +Ydy + Zdz (F = Xi +Yj + Zk ,dr = dxi + dyj + dzk F dr = Xdx+Ydy + Zdz) 力 F 在曲线路程 M1 M2 中作功为 = = 2 1 2 1 cos M M M M W F ds F ds (自然形式表达式) = 2 1 M M F dr (矢量式) = + + 2 1 M M Xdx Ydy Zdz (直角坐标表达式) 元功: W =Fcosds
3. Work done by a resol Dynamic Tant force If a particle is subjected to the action of n forces F..F, the resultant force isR=2F. The work done by the resultant force Ris M W=∫Rd=(F+F2+…+F)b 「Fd+「F2+…+「F=W+W2+…+Wn M1 Mi M1 le W=∑W he work done by the resultant force during a finite displacement is the arithmetical sum of the work done by all the component forces acting on the particle
9 3. Work done by a resultant force: If a particle is subjected to the action of n forces , the resultant force is . The work done by the resultant force is i.e, The work done by the resultant force during a finite displacement is the arithmetical sum of the work done by all the component forces acting on the particle. F F Fn , , , 1 2 R W R dr F F F dr n M M M M = = + ++ ( ) 2 1 2 1 1 2 F dr F dr F dr M M n M M M M = + ++ 2 1 2 1 2 1 1 2 W W +Wn = + + 1 2 W =Wi R = Fi
学 合力的功 质点M受n个力F,2…F作用合力为R=∑F则合力R 的功 M W=」Rd=(F1+F2+…+Fn)d M1 M M =「Fc+「F+…+「F1=W+W2+…+Wn 即 W=∑W 在任一路程上,合力的功等于各分力功的代数和 10
10 三.合力的功 质点M 受n个力 作用合力为 则合力 的功 F F Fn , , , 1 2 R = Fi R W R dr F F F dr n M M M M = = + ++ ( ) 2 1 2 1 1 2 F dr F dr F dr M M n M M M M = + ++ 2 1 2 1 2 1 1 2 W W +Wn = + + 1 2 即 在任一路程上,合力的功等于各分力功的代数和。 W =Wi