第三章医学超声仪器 物体的机械振动产生波,波的频率取决于物 体的振动频率。频率范围在2×104~3×108赫兹的 波称为超声波。 一个多世纪前,科学家们就发现石英等晶体 薄片具有“压电效应”。1928年,R.W.Wood等 人首先应用超声波作为生物学方面的研究手段 本世纪四十年代,Firestone等人开创了利用超声 波诊断疾病的先例,将工业无损伤检测用的超声 脉冲回波技术,即类似于现代雷达或声纳的回波 测距技术,移用到医院诊断方面,也就是A型超 声仪器,开创了超声显像诊断的历史
第三章 医学超声仪器 物体的机械振动产生波,波的频率取决于物 体的振动频率。频率范围在2×104~ 3×108赫兹的 波称为超声波。 一个多世纪前,科学家们就发现石英等晶体 薄片具有“压电效应”。1928年,R.W.Wood等 人首先应用超声波作为生物学方面的研究手段。 本世纪四十年代,Firestone等人开创了利用超声 波诊断疾病的先例,将工业无损伤检测用的超声 脉冲回波技术,即类似于现代雷达或声纳的回波 测距技术,移用到医院诊断方面,也就是A型超 声仪器,开创了超声显像诊断的历史
四十年代末,超声医学作为一门学科已初 具雏形。五十年代,超声心动图仪,即M型仪 器取代了A型超声仪器,它可对心脏瓣膜的运动 规律作连续的动态描记。在此基础上,又出现 了手动扫描二维断层成像仪,这为发明自动扫 描二维断层成像仪即B型超声仪器打下了基础。 其间,还有人提出将超声多普勒效应用于医学 临床诊断。六十至七十年代是B型超声仪器出现 并极大发展的时期,出现了机械直线扫描、机 械扇形扫描、电子直线扫描及电子扇形扫描等 仪器,并且超声CT的研究工作开始进行,A型 超声仪器也逐渐被淘汰
四十年代末,超声医学作为一门学科已初 具雏形。五十年代,超声心动图仪,即M型仪 器取代了A型超声仪器,它可对心脏瓣膜的运动 规律作连续的动态描记。在此基础上,又出现 了手动扫描二维断层成像仪,这为发明自动扫 描二维断层成像仪即B型超声仪器打下了基础。 其间,还有人提出将超声多普勒效应用于医学 临床诊断。六十至七十年代是B型超声仪器出现 并极大发展的时期,出现了机械直线扫描、机 械扇形扫描、电子直线扫描及电子扇形扫描等 仪器,并且超声CT的研究工作开始进行,A型 超声仪器也逐渐被淘汰
八十年代,随着微型计算机研究与应用的 飞速发展,超声智能化的步伐加快。利用微机 与超声诊断仪器相结合,可以简化临床操作, 实现信号处理、变换、计算和判断等过程的自 动进行。另外,将脉冲超声多普勒血流仪与B 超相结合,还产生了双功能超声诊断仪。进入 九十年代,彩色B超诞生,它可以在显示动态 心脏黑白图像的同时,显示动态多普勒血流的 彩色图像在心脏内的分布,不论在图像的分辨 率和清晰度上,还是疾病诊查的可靠性上,都 达到了相当高的水平,是目前医院必备的医学 诊断仪器
八十年代,随着微型计算机研究与应用的 飞速发展,超声智能化的步伐加快。利用微机 与超声诊断仪器相结合,可以简化临床操作, 实现信号处理、变换、计算和判断等过程的自 动进行。另外,将脉冲超声多普勒血流仪与B 超相结合,还产生了双功能超声诊断仪。进入 九十年代,彩色B超诞生,它可以在显示动态 心脏黑白图像的同时,显示动态多普勒血流的 彩色图像在心脏内的分布,不论在图像的分辨 率和清晰度上,还是疾病诊查的可靠性上,都 达到了相当高的水平,是目前医院必备的医学 诊断仪器
医学诊断上所使用的超声波频率一般 为0.5MHz>15MHz,多是由压电晶体一类 的材料制成的超声探头产生的。利用压电 陶瓷或晶体的正压电效应和逆压电效应 可以将其做成超声波发射和人体组织反射 波接收的器件,即超声换能器,它是超声 诊断仪器的重要部件,也称探头
医学诊断上所使用的超声波频率一般 为0.5MHz~15MHz,多是由压电晶体一类 的材料制成的超声探头产生的。利用压电 陶瓷或晶体的正压电效应和逆压电效应, 可以将其做成超声波发射和人体组织反射 波接收的器件,即超声换能器,它是超声 诊断仪器的重要部件,也称探头
压电效应及超声探头 “接地”连接 相声稀离材料 电极 超声聚难透镜 同轴电缆 换能器 + + “火线”莲接 电极 个 树热块 未加压力 压缩 换能器 拉伸 探头外克
压电效应及超声探头