基于FPGA的神经网络硬件实现方法

提出了一种可以灵活适应不同的工程应用中神经网络在规模、拓扑结构、传递函数和学习算法上的变化,并能及时根据市场需求快速建立原型的神经网络硬件可重构实现方法.对神经网络的可重构特征进行了分析,提出了三种主要的可重构单元;研究了可重构的脉动体系结构及BP网络到该结构映射算法;探讨了具体实现的相关问题.结果表明,这种方法不仅灵活性强,其实现的硬件也有较高的性价比,使用一片FPGA中的22个乘法器工作于100MHz时,学习速度可达432MCUPS.
文件格式:PDF,文件大小:444.93KB,售价:2.16元
文档详细内容(约6页)
点击进入文档下载页(PDF格式)
共6页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录