例3、数列{an}为等差数列,若a1+a2+a3=12 a3+a4+a10=75,求S0 解:由 a1+a2+a2=12, /a+d=4, a3+a2+a1o=75a1+8d=25 10×9 s=na+a, →S10=10a1+=d=145 n=na,+n-1) 又解:由 a1+a2+a3=12, +a+a=75 →a1+a10+a2+a+a3+a3=87 ∵a1+a10=a2+a=a3+ag 整体运算 3(a+a1)=8陬a1+a10)=29 的思想! 10 10(ag=5(a1+a0)=5×29=145 2
1 2 3 8 9 10 12, 75, . n a a a a a a a S + + = + + = 10 数 列 为 等 差 数 列,若 求 例 3 、 1 2 3 8 9 10 12 75 a a a a a a + + = + + = , 解: 由 1 1 1 4 1 8 25 3. a d a a d d + = = + = = , , 10 1 10 9 10 145. 2 S a d = + = 又解: 1 10 10 1 10 10( ) 5( ) 2 a a S a a + = = + 1 2 3 8 9 10 12 75 a a a a a a + + = + + = , 由 1 10 2 9 3 8 + + + + + = a a a a a a 87. 1 10 1 10 + = + = 3( ) 87 ( ) 29. a a a a 即 = = 5 29 145. 1 10 2 9 3 8 a a a a a a + = + = + , 整体运算 的思想 ! 1 1 ) 2 1) 2 n nn n a a S n n S na d + = − = + ( (
例4、在等差数列{an}中, 已知a,+a+ 12 15 36,求S1 16 解:a2+a+a,+a=36 →a2+a15=05+a12=a1+a16=18→ 16(a4+a=8(a1+a6 2 =8×18=144. na,+a,) n(n-1) s=na, t
例4、 2 5 12 15 16 36, . n a a a a a S + + + = 在等差数列 中, 已知 求 解: 1 16 16 1 16 16( ) 8( ) 2 a a S a a + = = + 2 5 12 15 2 15 5 12 1 16 36 18 a a a a a a a a a a + + + = + = + = + = = = 8 18 144. 1 1 ) 2 1) 2 n n n n a a S n n S na d + = − = + ( (