Chapter 6 A system is observable if the ngxn observability matrix has rank n full column rank) rank 0o n C CA 00- : CA-1 nmxn Proof:if u()=0 then x(t)=e4x(0) y(t)=Cx(t)=Ce x(0) n n-l e 4r ∑a,()A→y(0=C∑a,()Ax(0) i= i=0 →y(t)=la(t)a(t) a-1(t) x(0) ↓ CA"- unknown known Condition:rank is n
A system is observable if the nqn observability matrix has rank n ( full column rank) nm n n 1 CA CA C QO rank QO n Proof: if then u(t) 0 y( ) Cx( ) C e x(0) At t t x( ) e x(0) At t 1 0 e ( ) n i i i τ a τ A A ( ) ( ) (0) 1 0 y C A x n i i i t a τ ( ) ( ) ( ) ( ) (0) 1 0 1 1 x CA CA C y n n t a t a t a t known Condition: rank is n unknown Chapter 6
Chapter 6 18 Example:Is the following state equation observable? y=[0x Solution: rank Unobservable
• Example: Is the following state equation observable? 18 u 2 1 0 5 2 0 x x y 0 1x Solution: rank rank n 1 2 0 5 0 1 CA C Unobservable. Chapter 6