函数的极值及其求法 由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
函数的极值及其求法 由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
、函数极值的定义 y=f(r) x10
一、函数极值的定义 o x y a b y = f (x) x1 2 x x3 4 x 5 x 6 x o x y o x y 0 x 0 x
定义设函数f(x)在区间a,b内有定义,x是 (a,b内的一个点 如果存在着点x的一个邻域对于这邻域内的 任何点x除了点x外,f(x)<f(x0)均成立,就称 f(x1)是函数f(x)的一个极大值 如果存在着点x的一个邻域对于这邻域内的 任何点x,除了点x外,f(x)>f(x0)均成立就称 f(x0)是函数f(x)的一个极小值 函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点
( ) ( ) . , , ( ) ( ) , , ( ) ( ) ; , , ( ) ( ) , , ( , ) , ( ) ( , ) , 0 0 0 0 0 0 0 0 0 是函数 的一个极小值 任何点 除了点 外 均成立 就 称 如果存在着点 的一个邻域 对于这邻域内的 是函数 的一个极大值 任何点 除了点 外 均成立 就 称 如果存在着点 的一个邻域 对于这邻域内的 内的一个点 设函数 在区间 内有定义 是 f x f x x x f x f x x f x f x x x f x f x x a b f x a b x 定义 函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点
二、函数极值的求法 定理1(必要条件)设f(x)在点x处具有导数,且 在x处取得极值,那末必定f(x0)=0 定义使导数为零的点(即方程∫(x)=0的实根川叫 做函数f(x)的驻点 注意:可导函数f(x)的极值点必定是它的驻点, 但函数的驻点却不一定是极值点 例如,y=x3,yx=0=0,但x=0不是极值点
二、函数极值的求法 设 f (x)在点x0 处具有导数,且 在x0处取得极值,那末必定 ( 0 ) 0 ' f x = . 定理1(必要条件) 定义 ( ) . ( ( ) 0 ) 做函数 的驻点 使导数为零的点 即方程 的实根 叫 f x f x = 注意: . ( ) , 但函数的驻点却不一定是极值点 可导函数 f x 的极值点必定是它的驻点 例如, , 3 y = x 0, y x=0 = 但x = 0不是极值点
注①这个结论又称为 Ferma定理 ②如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号 ③不可导点也可能是极值点 可疑极值点:驻点、不可导点 可疑极值点是否是真正的极值点,还须进一步 判明。由单调性判定法则知,若可疑极值点的左、 右两侧邻近,导数分别保持一定的符号,则问题 即可得到解决
注 ①这个结论又称为Fermat定理 ②如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号 ③不可导点也可能是极值点 可疑极值点:驻点、不可导点 可疑极值点是否是真正的极值点,还须进一步 判明。由单调性判定法则知,若可疑极值点的左、 右两侧邻近,导数分别保持一定的符号,则问题 即可得到解决