信号输入方式 (1)共模输入 输入两个电压大小相等、极性相同的输入信号 称为共模输入。此时,因电路结构对称,两管 集电极电位的变化大小相等,极性相同,所以 在双端输出电压u保持为零。可见,在电路完 全对称的理想情况下,差动放大器在输入共模 信号时不产生输出电压。这时的电压放大倍 定义为共模电压放大倍数A,即A。=UUc。 理 想情况下,差动放大电路的共模电压放大倍数 为零。但实际上电路完全对称是很难做到的, 所以实际的差动放大电路的共模电压放大倍数 是一个很小的数
信号输入方式 (1)共模输入 输入两个电压大小相等、极性相同的输入信号 称为共模输入。此时,因电路结构对称,两管 集电极电位的变化大小相等,极性相同,所以 在双端输出电压uo保持为零。可见,在电路完 全对称的理想情况下,差动放大器在输入共模 信号时不产生输出电压。这时的电压放大倍数 定义为共模电压放大倍数Ac,即Ac=Uo /Uic。理 想情况下,差动放大电路的共模电压放大倍数 为零。但实际上电路完全对称是很难做到的, 所以实际的差动放大电路的共模电压放大倍数 是一个很小的数
差动放大电路因温度变化或电源波动, 引起两管集电极电位的变化,可看成 是在输入端施加了等效的共模信号。 因此,电路的对称性越好, 抑制零漂 的能力越强;抑制共模信号的能力越 强,共模电压放大倍数就越小。即差 动放大电路的共模电压放大倍数越小 其抑制零漂的能力就越强
差动放大电路因温度变化或电源波动, 引起两管集电极电位的变化,可看成 是在输入端施加了等效的共模信号。 因此,电路的对称性越好,抑制零漂 的能力越强;抑制共模信号的能力越 强,共模电压放大倍数就越小。即差 动放大电路的共模电压放大倍数越小, 其抑制零漂的能力就越强
(2)差模输入 输入两个电压的大小相等、极性相反的输 入信号称为差模输入。若设u(12)ua? u2=-(1/2)ua,则u12=ua,此时,两晶体 管电流和集电极电位的变化是相反的。在 双端输出时,输出电压的变化量是每个管 子集电极电位变化量的两倍。当输入差模 信号ua输出电压U时,两者之比即为差 模放大倍数,用A表示。设单管放大电路 的电压放大倍数为A,则:
(2)差模输入 输入两个电压的大小相等、极性相反的输 入信号称为差模输入。若设ui1=(1/2)uid, ui2 =-(1/2)uid,则ui1 - ui2 = uid,此时,两晶体 管电流和集电极电位的变化是相反的。在 双端输出时,输出电压的变化量是每个管 子集电极电位变化量的两倍。 当输入差模 信号uid、输出电压Uo时,两者之比即为差 模放大倍数,用Ad表示。设单管放大电路 的电压放大倍数为A1,则:
U。 Aa U1-Uo2 U 上式表明,用两个晶体管组成的差动放 大电路,双端输出时的电压放大倍数与 单管共发射极放大电路的电压放大倍数 相同。实际上这种电路是以牺性 一个管 子的放大作用为代价换取了对零漂的抑 制能力
上式表明,用两个晶体管组成的差动放 大电路,双端输出时的电压放大倍数与 单管共发射极放大电路的电压放大倍数 相同。实际上这种电路是以牺牲一个管 子的放大作用为代价换取了对零漂的抑 制能力。 1 1 1 1 2 ) 2 1 ( 2 1 A U U A U A U U U U U A i d i d i d i d o o i o d = − − = − = =
(3)任意信号输入 两个输入信号电压既非共模又非差模, 其大小和极性都是任意的,称为任意信 号输入。针对这种信号通常是将它们分 解成既包含有差模信号分量,又包含有 共模信号分量的合成信号。通过差动放 电路后,其共模信号分量受到抑制, 而差模信号分量才能得到放大,即体现 了差动放大电路在输入信号有差别时 才动作(放大)的特点
(3)任意信号输入 两个输入信号电压既非共模又非差模, 其大小和极性都是任意的,称为任意信 号输入。针对这种信号通常是将它们分 解成既包含有差模信号分量,又包含有 共模信号分量的合成信号。通过差动放 大电路后,其共模信号分量受到抑制, 而差模信号分量才能得到放大,即体现 了差动放大电路在输入信号有差别时, 才动作(放大)的特点