502 Novel food packagi of the PET flakes during washing and grinding with non-misused PET bottles concentrations of 1. 4 to 2.7 misused Pet bottles were estimated from the experimental data. These concentrations can be considered as a basis for the design of challenge tests with respect to sufficiently high input concentrations of surrogates The frequency of misuse was also detected by two other studies. Allen and Blakistone indicate that hydrocarbon for refillable PET bottles ejected between 0.3 and 1% of PET bottles as contaminated. The majority of these rejections came from PET containers with'exotic beverages and not from harmful contaminants. Therefore the part of misused bottles on the rejection in the device is less than 0. 3 to 1%. Bayer et al. -reported the frequency of misuse of pet bottles is one misused bottle out of 10000 uncontaminated bottles. Both studies are in agreement with the results of the EU project In conclusion for PET the predominating polymer unspecific contaminants oft drink ole. Pet contaminants such as phthalates are found far below I ppm. Misuse of PET bottles occurs only in a very low incidence and due to dilution with non- contaminated material the average concentration of substances originated from misuse are also in the lower ppm range. It should be noted here, that the given conclusions are only for PET bottles. If closed loop recycling of other packaging plastics is to be established similar studies on the input concentrations of post consumer substances should be done Comprehensive studies on the contamination of other polymers than PET are vary rare in the literature. Huber and Franzinvestigated 21 reprocessed HDPE pellet samples from the bottle fraction of household waste collections from five different sources. Aim of the study was to investigate the quality of the recycled HDPE samples focusing on substances which are not present in virgin polymers The samples are recycled with conventional washing and extruding steps without a further deep cleansing recycling process. They found that the post consumer related substances in these different samples were the same. They dentified 74 substances which occur in concentrations in the polymers above 0.5 ppm. The predominant species are ester from saturated fatty acids and phthalates, hydrocarbons, preservatives, monoterpenes and sesquiterpenes including their derivatives most of the substances are identified as constituents from personal hygiene products, cosmetics and cleaning agents which are sorbed into the polymer material during storage. The highest concentrations were found for limonene, diethy hexyl phthalate and the isopropyl esters of myristic and palmitic acid, which are present in the concentration range of 50 ppm to 200 ppm. Many odour compounds and preservatives are determined in concentrations of about 0.5 ppm and 10 ppm. They came to the conclusion that due to the concentration and nature of contaminants found in the investigated HDPE samples the recycled material is suitable only for non-food In a second study Huber and Franz investigated a total amount 79 polymer samples(HDPE, PP, PS and PET)from controlled recollecting sources. As a
of the PET flakes during washing and grinding with non-misused PET bottles average concentrations of 1.4 to 2.7 ppm for conspicuous substances from misused PET bottles were estimated from the experimental data. These concentrations can be considered as a basis for the design of challenge tests with respect to sufficiently high input concentrations of surrogates. The frequency of misuse was also detected by two other studies. Allen and Blakistone11 indicate that hydrocarbon ‘sniffers’ for refillable PET bottles rejected between 0.3 and 1% of PET bottles as contaminated. The majority of these rejections came from PET containers with ‘exotic’ beverages and not from harmful contaminants. Therefore the part of misused bottles on the rejection in the ‘sniffer’ device is less than 0.3 to 1%. Bayer et al. 12 reported the frequency of misuse of PET bottles is one misused bottle out of 10 000 uncontaminated bottles. Both studies are in agreement with the results of the EU project. In conclusion for PET the predominating polymer unspecific contaminants are soft drink components where limonene plays a key role. PET unspecific contaminants such as phthalates are found far below 1 ppm. Misuse of PET bottles occurs only in a very low incidence and due to dilution with noncontaminated material the average concentration of substances originated from misuse are also in the lower ppm range. It should be noted here, that the given conclusions are only for PET bottles. If closed loop recycling of other packaging plastics is to be established similar studies on the input concentrations of postconsumer substances should be done. Comprehensive studies on the contamination of other polymers than PET are vary rare in the literature. Huber and Franz13 investigated 21 reprocessed HDPE pellet samples from the bottle fraction of household waste collections from five different sources. Aim of the study was to investigate the quality of the recycled HDPE samples focusing on substances which are not present in virgin polymers. The samples are recycled with conventional washing and extruding steps without a further deep cleansing recycling process. They found that the postconsumer related substances in these different samples were the same. They identified 74 substances which occur in concentrations in the polymers above 0.5 ppm. The predominant species are ester from saturated fatty acids and phthalates, hydrocarbons, preservatives, monoterpenes and sesquiterpenes including their derivatives. Most of the substances are identified as constituents from personal hygiene products, cosmetics and cleaning agents which are sorbed into the polymer material during storage. The highest concentrations were found for limonene, diethylhexyl phthalate and the isopropyl esters of myristic and palmitic acid, which are present in the concentration range of 50 ppm to 200 ppm. Many odour compounds and preservatives are determined in concentrations of about 0.5 ppm and 10 ppm. They came to the conclusion that due to the concentration and nature of contaminants found in the investigated HDPE samples the recycled material is suitable only for non-food packaging. In a second study Huber and Franz14 investigated a total amount 79 polymer samples (HDPE, PP, PS and PET) from controlled recollecting sources. As a 502 Novel food packaging techniques
Recycling packaging materials 503 result they found limonene in nearly all polymer samples independent of the polymer type in concentrations up to 100 ppm for polyolefines(HDPE and PP) and 12 ppm and 3 ppm for Ps and PET, respectively. Limonene can be considered as a marker substance for post-consumer polymers. It is interesting to note that the differences in the limonene concentration are in line with the diffusion behaviour of the polymers. In addition to limonene they found phthalates esters, alkanes, 2, 6-di-tert-butyl-4-hydroxytoluene and oligomers but no hints for misuse of the bottles for storage of toxic chemicals. They concluded that most of the investigated(conventionally recycled) polymers are excluded from closed loop recycling due to the fact that in the polymers substances can be detected which are not in compliance with the European positive list system. It should be noted here that this is an inherent problem of positive lists in view of food law compliance of recycled polymers as well as virgin polymers. A threshold of regulation concept should offer a solution of assuming that a certain concentration of non-regulated compounds is of no concern for consumers 23.3.3 Recvcling technology Today a considerable diversity in recycling technologies can be found, although all of them have the same objective which is to clean up post-consumer plastics Most of them first use a water-based washing step to reduce surface contamination and to wash off dirt. labels and clues from the labels. the material is also ground to flakes during one of the first steps in the recycling process. In most cases these washing steps are combined with separating steps where different materials like polyolefines of PET are separated due to their density. It is obvious, that the cleaning efficiency of these washing processes is normally very different, depending on time, on hot or cold water-based washing or depending on the detergents added to the washing solution. However, typical washing processes are able to remove only contaminants from the surface of the polyme hey are not able to remove organic substances which have migrated in the polymer. Therefore the purity of washed flakes is usually not suitable for closed-loop recycling. A simple remelting or re-extrusion of the washed fakes has an additional cleaning effect, however the purity is usually not sufficient for reuse in the sensitive area of food packaging So-called super-clean processes for closed-loop recycling of packaging materials therefore use further deep cleansing steps. Although there are many technologies commercially available the deep cleansing processes normally use heat and temperature, vacuum or surface treatment with chemicals for a certain time to decrease the concentration of unwanted substances in the polymers. The research on the cleaning efficiency of such super-clean recycling processes has shown that the existing recycling technologies are distinct in terms of rejection of unsuitable material, removal of contaminants and dilution with virgin material. Each of these stages in recycling uses special processes which have an effect on the quality of the finished recyclate containing packaging
result they found limonene in nearly all polymer samples independent of the polymer type in concentrations up to 100 ppm for polyolefines (HDPE and PP) and 12 ppm and 3 ppm for PS and PET, respectively. Limonene can be considered as a marker substance for post-consumer polymers. It is interesting to note that the differences in the limonene concentration are in line with the diffusion behaviour of the polymers. In addition to limonene they found phthalates esters, alkanes, 2,6-di-tert-butyl-4-hydroxytoluene and oligomers but no hints for misuse of the bottles for storage of toxic chemicals. They concluded that most of the investigated (conventionally recycled) polymers are excluded from closed loop recycling due to the fact that in the polymers substances can be detected which are not in compliance with the European positive list system. It should be noted here that this is an inherent problem of positive lists in view of food law compliance of recycled polymers as well as virgin polymers. A threshold of regulation concept should offer a solution of assuming that a certain concentration of non-regulated compounds is of no concern for consumers’ health. 23.3.3 Recycling technology Today a considerable diversity in recycling technologies can be found, although all of them have the same objective which is to clean up post-consumer plastics. Most of them first use a water-based washing step to reduce surface contamination and to wash off dirt, labels and clues from the labels. The material is also ground to flakes during one of the first steps in the recycling process. In most cases these washing steps are combined with separating steps where different materials like polyolefines of PET are separated due to their density. It is obvious, that the cleaning efficiency of these washing processes is normally very different, depending on time, on hot or cold water-based washing or depending on the detergents added to the washing solution. However, typical washing processes are able to remove only contaminants from the surface of the polymers.15,16 They are not able to remove organic substances which have migrated in the polymer. Therefore the purity of washed flakes is usually not suitable for closed-loop recycling. A simple remelting or re-extrusion of the washed fakes has an additional cleaning effect,17 however the purity is usually not sufficient for reuse in the sensitive area of food packaging. So-called super-clean processes for closed-loop recycling of packaging materials therefore use further deep cleansing steps. Although there are many technologies commercially available the deep cleansing processes normally use heat and temperature, vacuum or surface treatment with chemicals for a certain time to decrease the concentration of unwanted substances in the polymers. The research on the cleaning efficiency of such super-clean recycling processes has shown that the existing recycling technologies are distinct in terms of rejection of unsuitable material, removal of contaminants and dilution with virgin material. Each of these stages in recycling uses special processes which have an effect on the quality of the finished recyclate containing packaging. Recycling packaging materials 503
504 Novel food packaging techniques 23.4 Testing the safety and quality of recycled material 23. 4.1 Challenge test The cleaning efficiency of super-clean processes is usually determined by challenge test. This challenge test is based on an artificial contamination of the nput material going into the recycling process. Drawing up a worst-case scenario this challenge test simulates the possible misuse of the containers for the storage of household or garden chemicals in plastic containers. The first recommendations for such a challenge test are coming from the american Food nd Drug Administration(FDA) 8, I9 in 1992. It was a very pragmatic approach The FDa originally suggested realistic contaminants like chloroform, diazinon, gasoline, lindane, and disodium monomethyl arsenate for use in challenge tests However it has been shown in the past that the stability of these surrogates during recycling is in some cases not sufficient. Also the analytical methods in order to detect the surrogates are often difficult to establish and have high detection limits. It is easy to understand that the surrogates used in a challenge est should not degrade during all recycling steps. Otherwise the cleaning efficiency will be better than reality, with adverse consequences towards consumers' safety In the last ten years the selection of the surrogates has moved to chemicals ith more model character. This development was supported by the fact that the range of chemicals available to the customers is extremely limited in practice especially in the case of known genotoxic carcinogens. The surrogates used today in challenge tests cover the whole range of physical properties like polarity and volatility as well as the chemical nature of the compound Additionally, in some surrogates very aggressive chemicals towards the polymer are introduced. However, if too aggressive chemicals are used the physical properties of the polymer and the diffusion behaviour might be changed, which reduces the perception of the challenge test. Nowadays volatile chemicals like toluene. chlorobenzene. chloroform or l1.1-trichloroethane as well as non volatile substances like phenyl cyclohexane, methyl stearate, tetracosane benzophenone, methyl salicylate and methyl stearate are typically used. Of course, other substances with defined physical and chemical properties can be used for a challenge test. It should be kept in mind that such a test should challenge the recycling process in a worst-case scenario. If the resultant ecyclate meets the food law requirements even under such a worst case scenario the process is able to produce recyclates suitable for reuse in packaging applications. In the last decade there have been controversial discussions between scientists, industry and authorities, in view of the worst-case character of such challenge tests. In most cases these discussions arise from the lack of information about the average contamination in the input materials for recycling As mentioned above, the worst-case scenario depends on the concentrations of undesired substances in the post-consumer plastics as well as the frequency of misuse of plastic containers. With knowledge of contamination appropriate safety margins for each polymer type can be defined
23.4 Testing the safety and quality of recycled material 23.4.1 Challenge test The cleaning efficiency of super-clean processes is usually determined by challenge test. This challenge test is based on an artificial contamination of the input material going into the recycling process. Drawing up a worst-case scenario this challenge test simulates the possible misuse of the containers for the storage of household or garden chemicals in plastic containers. The first recommendations for such a challenge test are coming from the American Food and Drug Administration (FDA)18,19 in 1992. It was a very pragmatic approach. The FDA originally suggested realistic contaminants like chloroform, diazinon, gasoline, lindane, and disodium monomethyl arsenate for use in challenge tests. However it has been shown in the past that the stability of these surrogates during recycling is in some cases not sufficient. Also the analytical methods in order to detect the surrogates are often difficult to establish and have high detection limits. It is easy to understand that the surrogates used in a challenge test should not degrade during all recycling steps. Otherwise the cleaning efficiency will be better than reality, with adverse consequences towards consumers’ safety. In the last ten years the selection of the surrogates has moved to chemicals with more model character. This development was supported by the fact that the range of chemicals available to the customers is extremely limited in practice, especially in the case of known genotoxic carcinogens. The surrogates used today in challenge tests cover the whole range of physical properties like polarity and volatility as well as the chemical nature of the compounds. Additionally, in some surrogates very aggressive chemicals towards the polymer are introduced. However, if too aggressive chemicals are used the physical properties of the polymer and the diffusion behaviour might be changed, which reduces the perception of the challenge test. Nowadays volatile chemicals like toluene, chlorobenzene, chloroform or 1,1,1-trichloroethane as well as nonvolatile substances like phenyl cyclohexane, methyl stearate, tetracosane, benzophenone, methyl salicylate and methyl stearate are typically used. Of course, other substances with defined physical and chemical properties can be used for a challenge test. It should be kept in mind that such a test should challenge the recycling process in a worst-case scenario. If the resultant recyclate meets the food law requirements even under such a worst case scenario the process is able to produce recyclates suitable for reuse in packaging applications. In the last decade there have been controversial discussions between scientists, industry and authorities, in view of the worst-case character of such challenge tests. In most cases these discussions arise from the lack of information about the average contamination in the input materials for recycling. As mentioned above, the worst-case scenario depends on the concentrations of undesired substances in the post-consumer plastics as well as the frequency of misuse of plastic containers. With knowledge of contamination appropriate safety margins for each polymer type can be defined. 504 Novel food packaging techniques