第一节概述 量的高聚物以及在分子量上只有微小差异的化合物外, 凡是具有结构不同的两个化合物,一定不会有相同的红 外光谱。通常红外吸收带的波长位置与吸收谱带的强度, 反映了分子结构上的特点,可以用来鉴定未知物的结构 组成或确定其化学基团;历吸收谱带的吸收强度与分子 组成或化学基团的含量有关,可用以进行定量分析和纯 庹签定。由于红外光谱分析特征性强,气体、液体、固 体样品都可测定,并具有用量少,分析速度快,不破坏 样品的特点。因此,红外光谱法不仅与其它许多分析方 法一样,能进行定性和定量分析,而且该法是鉴定化合 物和测定分子结构的最有用方法之
6 第一节 概述 量的高聚物以及在分子量上只有微小差异的化合物外, 凡是具有结构不同的两个化合物,一定不会有相同的红 外光谱。通常红外吸收带的波长位置与吸收谱带的强度, 反映了分子结构上的特点,可以用来鉴定未知物的结构 组成或确定其化学基团;而吸收谱带的吸收强度与分子 组成或化学基团的含量有关,可用以进行定量分析和纯 度鉴定。由于红外光谱分析特征性强,气体、液体、固 体样品都可测定,并具有用量少,分析速度快,不破坏 样品的特点。因此,红外光谱法不仅与其它许多分析方 法一样,能进行定性和定量分析,而且该法是鉴定化合 物和测定分子结构的最有用方法之一
第二节基本原理 产生红外吸收的条件 1。辐射光子具有的能量与发生振动跃迁所需的跃迁能量 相等 红外吸收光谱是分子振动能级跃迁产生的。因为分 子振动能级差为0.05~1.0eV,比转动能级差(0.000l 0.05eV)大,因此分子发生振动能级跃迁时,不可避免 地伴随转动能级的跃迁,因而无法测得纯振动光谱,但 为了讨论方便,以双原子分子振动光谱为例说明红外光 谱产生的条件。若把双原子分子(AB)的两个原子看作
7 第二节 基本原理 一、产生红外吸收的条件 1 . 辐射光子具有的能量与发生振动跃迁所需的跃迁能量 相等 红外吸收光谱是分子振动能级跃迁产生的。因为分 子振动能级差为0.05~1.0eV,比转动能级差(0.0001 0.05eV)大,因此分子发生振动能级跃迁时,不可避免 地伴随转动能级的跃迁,因而无法测得纯振动光谱,但 为了讨论方便,以双原子分子振动光谱为例说明红外光 谱产生的条件。若把双原子分子(A-B)的两个原子看作
第二节基本原理 两个小球,把连结它们的化学键看成质量可以忽略不计 的弹簧,则两个原子间的伸缩振动,可近似地看成沿键 轴方向的间谐振动。由量子力学可以证明,该分子的振 动总能量E为: =(V+1/2)hv(v=0,1,2,…) 式中ν为振动量子数(V=0,1,2,…);E是与 振动量子数ν相应的体系能量;v为分子振动的频率。 在室温时,分子处于基态(V=0),E=12·hv,此 时,伸缩振动的频率很小。当有红外辐射照射到分子时 若红外辐射的光子(v)所具有的能量(E1)恰好等于
8 第二节 基本原理 两个小球,把连结它们的化学键看成质量可以忽略不计 的弹簧,则两个原子间的伸缩振动,可近似地看成沿键 轴方向的间谐振动。由量子力学可以证明,该分子的振 动总能量(E )为: E= ( +1/2)h(=0,1,2,) 式中为振动量子数( =0,1,2,……);E是与 振动量子数相应的体系能量;为分子振动的频率。 在室温时,分子处于基态(=0),E= 1/2•h,此 时,伸缩振动的频率很小。当有红外辐射照射到分子时, 若红外辐射的光子(L)所具有的能量(EL)恰好等于
第二节基本原理 分子振动能级的能量差(△E振)时,则分子将吸收红外 辐射而跃迁至激发态,导致振幅增大。分子振动能级的 能量差为 △E振△vehv 又光子能量为 EL=hv 于是可得产生红外吸收光谱的第一条件为: EL=△E振 即v=△vov
9 第二节 基本原理 分子振动能级的能量差(△E振)时,则分子将吸收红外 辐射而跃迁至激发态,导致振幅增大。分子振动能级的 能量差为 △E振=△•h 又光子能量为 EL=hL 于是可得产生红外吸收光谱的第一条件为: EL =△E振 即L =△•
第二节基本原理 表明,只有当红外辐射频率等于振动量子数的差值 与分子振动频率的乘积时,分子才能吸收红外辐射,产 生红外吸收光谱。 分子吸收红外辐射后,由基态振动能级(V=0)跃迁 至第一振动激发态(v=1)时,所产生的吸收峰称为基频 峰。因为△v=1时,ⅵ=V,所以基频峰的位置(v1)等于 分子的振动频率。 在红外吸收光谱上除基频峰外,还有振动能级由基态 (v=0)跃迁至第二激发态(v2)、第三激发态(v=3) ,所产生的吸收峰称为倍频峰
10 第二节 基本原理 表明,只有当红外辐射频率等于振动量子数的差值 与分子振动频率的乘积时,分子才能吸收红外辐射,产 生红外吸收光谱。 分子吸收红外辐射后,由基态振动能级(=0)跃迁 至第一振动激发态(=1)时,所产生的吸收峰称为基频 峰。因为△=1时,L =,所以 基频峰的位置(L)等于 分子的振动频率。 在红外吸收光谱上除基频峰外,还有振动能级由基态 ( =0)跃迁至第二激发态( =2)、第三激发态( =3) ,所产生的吸收峰称为倍频峰