Cauchy- demann方程 0_0 au ay a Cauchy- Riemann方程是函数可导的必要条件 °但不是充分条件 可以证明,若∫(2)=a(x,3)+i(x,y)的实部 l(x,y)和虚部(x,y)均可微,且满足 Cauchy-Riemann方程,则函数f()可导( 4即四个偏导数ou/ax,Ou/0y,O/(x和0v/0y存在且连续
Analytic Functions Elementary Functions Differentiability Analyticity Cauchy-Riemann§ ∂u ∂x = ∂v ∂y ∂u ∂y = − ∂v ∂x Cauchy-Riemann§´¼ê7^ Ø´¿©^ ±y²§ef(z) = u(x, y) + iv(x, y) ¢Ü u(x, y)ÚJÜv(x, y)þ1 § ÷v Cauchy-Riemann§§K¼êf(z) 1=o ê ∂u/∂x, ∂u/∂y, ∂v/∂xÚ∂v/∂y3 ëY C. S. Wu 1ù )Û¼ê