Contents xiii 7.3 Exergy of a System 362 8.4 Improving Performance-Regenerative 7.3.1 Exergy Aspects 365 Vapor Power Cycle 453 7.3.2 Specific Exergy 366 8.4.1 Open Feedwater Heaters 453 7.3.3 Exergy Change 368 8.4.2 Closed Feedwater Heaters 458 7.4 Closed System Exergy Balance 368 8.4.3 Multiple Feedwater Heaters 459 7.4.1 Introducing the Closed System Exergy 8.5 Other Vapor Power Cycle Aspects 463 Balance 369 8.5.1 Working Fluids 463 7.4.2 Closed System Exergy Rate 8.5.2 Cogeneration 465 Balance 373 8.5.3 Carbon Capture and Storage 465 7.4-3 Exergy Destruction and Loss 374 8.6 Case Study:Exergy Accounting 7.4.4 Exergy Accounting 376 of a Vapor Power Plant 468 7.5 Exergy Rate Balance for Control Volumes Chapter Summary and Study Guide 475 at Steady State 377 7.5.1 Comparing Energy and Exergy for Control Volumes at Steady State 380 9 Gas Power Systems 493 7-5-2 Evaluating Exergy Destruction in Control Considering Internal Combustion Engines 494 Volumes at Steady State 380 9.1 Introducing Engine Terminology 494 7-5-3 Exergy Accounting in Control Volumes at Steady State 385 9.2 Air-Standard Otto Cycle 497 7.6 Exergetic(Second Law)Efficiency 389 9.3 Air-Standard Diesel Cycle 502 7.6.1 Matching End Use to Source 390 9.4 Air-Standard Dual Cycle 506 7.6.2 Exergetic Efficiencies of Common Considering Gas Turbine Power Plants 509 Components 392 9.5 Modeling Gas Turbine Power Plants 509 7.6.3 Using Exergetic Efficiencies 394 9.6 Air-Standard Brayton Cycle 511 7.7 Thermoeconomics 395 9.6.1 Evaluating Principal Work and Heat 7-7.1 Costing 395 Transfers 511 7-7.2 Using Exergy in Design 396 9.6.2 Ideal Air-Standard Brayton Cycle 512 7-7-3 Exergy Costing of a Cogeneration 9.6.3 Considering Gas Turbine Irreversibilities and System 398 Losses 518 Chapter Summary and Study Guide 403 9-7 Regenerative Gas Turbines 521 9.8 Regenerative Gas Turbines with Reheat 8 Vapor Power Systems 425 and Intercooling 525 Introducing Power Generation 426 9.8.1 Gas Turbines with Reheat 526 Considering Vapor Power Systems 430 9.8.2 Compression with Intercooling 528 8.1 Introducing Vapor Power Plants 430 9.8.3 Reheat and Intercooling 532 8.2 The Rankine Cycle 433 9.8.4 Ericsson and Stirling Cycles 535 8.2.1 Modeling the Rankine Cycle 434 9.9 Gas Turbine-Based Combined Cycles 537 8.2.2 Ideal Rankine Cycle 437 9.9.1 Combined Gas Turbine-Vapor Power Cycle 537 8.2.3 Effects of Boiler and Condenser Pressures on 9.9.2 Cogeneration 544 the Rankine Cycle 441 9.10 Integrated Gasification Combined-Cycle 8.2.4 Principal Irreversibilities and Losses 443 Power Plants 544 8.3 Improving Performance- 9.11 Gas Turbines for Aircraft Superheat,Reheat,and Supercritical 447 Propulsion 546
Contents xiii 7.3 Exergy of a System 362 7.3.1 Exergy Aspects 365 7.3.2 Specifi c Exergy 366 7.3.3 Exergy Change 368 7.4 Closed System Exergy Balance 368 7.4.1 Introducing the Closed System Exergy Balance 369 7.4.2 Closed System Exergy Rate Balance 373 7.4.3 Exergy Destruction and Loss 374 7.4.4 Exergy Accounting 376 7.5 Exergy Rate Balance for Control Volumes at Steady State 377 7.5.1 Comparing Energy and Exergy for Control Volumes at Steady State 380 7.5.2 Evaluating Exergy Destruction in Control Volumes at Steady State 380 7.5.3 Exergy Accounting in Control Volumes at Steady State 385 7.6 Exergetic (Second Law) Effi ciency 389 7.6.1 Matching End Use to Source 390 7.6.2 Exergetic Effi ciencies of Common Components 392 7.6.3 Using Exergetic Effi ciencies 394 7.7 Thermoeconomics 395 7.7.1 Costing 395 7.7.2 Using Exergy in Design 396 7.7.3 Exergy Costing of a Cogeneration System 398 Chapter Summary and Study Guide 403 8 Vapor Power Systems 425 Introducing Power Generation 426 Considering Vapor Power Systems 430 8.1 Introducing Vapor Power Plants 430 8.2 The Rankine Cycle 433 8.2.1 Modeling the Rankine Cycle 434 8.2.2 Ideal Rankine Cycle 437 8.2.3 Effects of Boiler and Condenser Pressures on the Rankine Cycle 441 8.2.4 Principal Irreversibilities and Losses 443 8.3 Improving Performance— Superheat, Reheat, and Supercritical 447 8.4 Improving Performance— Regenerative Vapor Power Cycle 453 8.4.1 Open Feedwater Heaters 453 8.4.2 Closed Feedwater Heaters 458 8.4.3 Multiple Feedwater Heaters 459 8.5 Other Vapor Power Cycle Aspects 463 8.5.1 Working Fluids 463 8.5.2 Cogeneration 465 8.5.3 Carbon Capture and Storage 465 8.6 Case Study: Exergy Accounting of a Vapor Power Plant 468 Chapter Summary and Study Guide 475 9 Gas Power Systems 493 Considering Internal Combustion Engines 494 9.1 Introducing Engine Terminology 494 9.2 Air-Standard Otto Cycle 497 9.3 Air-Standard Diesel Cycle 502 9.4 Air-Standard Dual Cycle 506 Considering Gas Turbine Power Plants 509 9.5 Modeling Gas Turbine Power Plants 509 9.6 Air-Standard Brayton Cycle 511 9.6.1 Evaluating Principal Work and Heat Transfers 511 9.6.2 Ideal Air-Standard Brayton Cycle 512 9.6.3 Considering Gas Turbine Irreversibilities and Losses 518 9.7 Regenerative Gas Turbines 521 9.8 Regenerative Gas Turbines with Reheat and Intercooling 525 9.8.1 Gas Turbines with Reheat 526 9.8.2 Compression with Intercooling 528 9.8.3 Reheat and Intercooling 532 9.8.4 Ericsson and Stirling Cycles 535 9.9 Gas Turbine–Based Combined Cycles 537 9.9.1 Combined Gas Turbine–Vapor Power Cycle 537 9.9.2 Cogeneration 544 9.10 Integrated Gasifi cation Combined-Cycle Power Plants 544 9.11 Gas Turbines for Aircraft Propulsion 546 FMTOC.indd Page xiii 10/14/10 2:09:07 PM user-f391 /Users/user-f391/Desktop/24_09_10/JWCL339/New File
xiv Contents Considering Compressible Flow Through 10.5 Absorption Refrigeration 606 Nozzles and Diffusers 550 10.6 Heat Pump Systems 608 9.12 Compressible Flow Preliminaries 551 10.6.1 Carnot Heat Pump Cycle 608 9.12.1 Momentum Equation for Steady 10.6.2 Vapor-Compression Heat One-Dimensional Flow 551 Pumps 608 9.12.2 Velocity of Sound and Mach 10.7 Gas Refrigeration Systems 612 Number 552 10.7.1 Brayton Refrigeration Cycle 612 9.12.3 Determining Stagnation State Properties 555 10.7.2 Additional Gas Refrigeration Applications 616 9.13 Analyzing One-Dimensional Steady Flow 1o.7.3 Automotive Air Conditioning Using Carbon in Nozzles and Diffusers 555 Dioxide 617 9.13.1 Exploring the Effects of Area Change in Chapter Summary and Study Guide 619 Subsonic and Supersonic Flows 555 9.13.2 Effects of Back Pressure on Mass Flow Rate 558 11 Thermodynamic Relations 631 9.13.3 Flow Across a Normal Shock 560 11.1 Using Equations of State 632 9.14 Flow in Nozzles and Diffusers of Ideal 1.1.1 Getting Started 632 Gases with Constant Specific 11.1.2 Two-Constant Equations of State 633 Heats 561 1.1.3 Multiconstant Equations of State 637 9.14.1 Isentropic Flow Functions 562 11.2 Important Mathematical Relations 638 9.14.2 Normal Shock Functions 565 11.3 Developing Property Relations 641 Chapter Summary and Study Guide 569 1.3.1 Principal Exact Differentials 642 1.3-2 Property Relations from Exact 10 Refrigeration and Heat Pump Differentials 642 Systems 589 1.3-3 Fundamental Thermodynamic Functions 647 10.1 Vapor Refrigeration Systems 590 11.4 Evaluating Changes in Entropy, 10.1.1 Carnot Refrigeration Cycle 590 Internal Energy,and Enthalpy 648 10.1.2 Departures from the Carnot Cycle 591 1.4.1 Considering Phase Change 648 10.2 Analyzing Vapor-Compression 11.4.2 Considering Single-Phase Refrigeration Systems 592 Regions 651 no.2.1 Evaluating Principal Work and Heat 11.5 Other Thermodynamic Relations 656 Transfers 592 n.5.1 Volume Expansivity,Isothermal and 10.2.2 Performance of ldeal Vapor- Isentropic Compressibility 657 Compression Systems 593 1.5.2 Relations Involving Specific Heats 658 10.2.3 Performance of Actual Vapor- Compression Systems 596 1.5.3 Joule-Thomson Coefficient 661 10.2.4 The p-h Diagram 600 1.6 Constructing Tables of Thermodynamic 10.3 Selecting Refrigerants 6o0 Properties 663 10.4 Other Vapor-Compression 1.6.1 Developing Tables by Integration Using P-v-T and Specific Heat Data 664 Applications 603 1.6.2 Developing Tables by Differentiating 10.4.1 Cold Storage 603 a Fundamental Thermodynamic 10.4.2 Cascade Cycles 604 Function 665 10.4.3 Multistage Compression with 11.7 Generalized Charts for Enthalpy Intercooling 605 and Entropy 668
xiv Contents Considering Compressible Flow Through Nozzles and Diffusers 550 9.12 Compressible Flow Preliminaries 551 9.12.1 Momentum Equation for Steady One-Dimensional Flow 551 9.12.2 Velocity of Sound and Mach Number 552 9.12.3 Determining Stagnation State Properties 555 9.13 Analyzing One-Dimensional Steady Flow in Nozzles and Diffusers 555 9.13.1 Exploring the Effects of Area Change in Subsonic and Supersonic Flows 555 9.13.2 Effects of Back Pressure on Mass Flow Rate 558 9.13.3 Flow Across a Normal Shock 560 9.14 Flow in Nozzles and Diffusers of Ideal Gases with Constant Specifi c Heats 561 9.14.1 Isentropic Flow Functions 562 9.14.2 Normal Shock Functions 565 Chapter Summary and Study Guide 569 10 Refrigeration and Heat Pump Systems 589 10.1 Vapor Refrigeration Systems 590 10.1.1 Carnot Refrigeration Cycle 590 10.1.2 Departures from the Carnot Cycle 591 10.2 Analyzing Vapor-Compression Refrigeration Systems 592 10.2.1 Evaluating Principal Work and Heat Transfers 592 10.2.2 Performance of Ideal VaporCompression Systems 593 10.2.3 Performance of Actual VaporCompression Systems 596 10.2.4 The p–h Diagram 600 10.3 Selecting Refrigerants 600 10.4 Other Vapor-Compression Applications 603 10.4.1 Cold Storage 603 10.4.2 Cascade Cycles 604 10.4.3 Multistage Compression with Intercooling 605 10.5 Absorption Refrigeration 606 10.6 Heat Pump Systems 608 10.6.1 Carnot Heat Pump Cycle 608 10.6.2 Vapor-Compression Heat Pumps 608 10.7 Gas Refrigeration Systems 612 10.7.1 Brayton Refrigeration Cycle 612 10.7.2 Additional Gas Refrigeration Applications 616 10.7.3 Automotive Air Conditioning Using Carbon Dioxide 617 Chapter Summary and Study Guide 619 11 Thermodynamic Relations 631 11.1 Using Equations of State 632 11.1.1 Getting Started 632 11.1.2 Two-Constant Equations of State 633 11.1.3 Multiconstant Equations of State 637 11.2 Important Mathematical Relations 638 11.3 Developing Property Relations 641 11.3.1 Principal Exact Differentials 642 11.3.2 Property Relations from Exact Differentials 642 11.3.3 Fundamental Thermodynamic Functions 647 11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy 648 11.4.1 Considering Phase Change 648 11.4.2 Considering Single-Phase Regions 651 11.5 Other Thermodynamic Relations 656 11.5.1 Volume Expansivity, Isothermal and Isentropic Compressibility 657 11.5.2 Relations Involving Specifi c Heats 658 11.5.3 Joule–Thomson Coeffi cient 661 11.6 Constructing Tables of Thermodynamic Properties 663 11.6.1 Developing Tables by Integration Using p–y–T and Specifi c Heat Data 664 11.6.2 Developing Tables by Differentiating a Fundamental Thermodynamic Function 665 11.7 Generalized Charts for Enthalpy and Entropy 668 FMTOC.indd Page xiv 10/14/10 2:09:08 PM user-f391 /Users/user-f391/Desktop/24_09_10/JWCL339/New File
Contents 11.8 p-v-T Relations for Gas Mixtures 675 12.7 Psychrometric Charts 740 11.9 Analyzing Multicomponent 12.8 Analyzing Air-Conditioning Systems 679 Processes 741 1.9.1 Partial Molal Properties 680 12.8.1 Applying Mass and Energy Balances 1.9.2 Chemical Potential 682 to Air-Conditioning Systems 741 1.9-3 Fundamental Thermodynamic Functions 12.8.2 Conditioning Moist Air at Constant for Multicomponent Systems 683 Composition 743 11.9.4 Fugacity 685 12.8.3 Dehumidification 746 1.9.5 Ideal Solution 688 12.8.4 Humidification 750 1.9.6 Chemical Potential for ldeal 12.8.5 Evaporative Cooling 752 Solutions 689 12.8.6 Adiabatic Mixing of Two Moist Air Chapter Summary and Study Guide 69o Streams 755 12.9 Cooling Towers 758 12 Ideal Gas Mixture and Chapter Summary and Study Guide 761 Psychrometric Applications 705 13 Reacting Mixtures and Ideal Gas Mixtures:General Combustion 777 Considerations 706 12.1 Describing Mixture Composition 706 Combustion Fundamentals 778 13.1 Introducing Combustion 778 12.2 Relating p,V,and T for Ideal Gas Mixtures 710 13.1.1 Fuels779 12.3 Evaluating U,H,S,and Specific 13.1.2 Modeling Combustion Air 779 Heats 711 13.1.3 Determining Products of Combustion 782 12.3.1 Evaluating U and H 711 13.1.4 Energy and Entropy Balances for Reacting 12.3.2 Evaluating c and cp 712 Systems 786 12.3-3 Evaluating S 712 13.2 Conservation of Energy-Reacting Systems 787 12.3.4 Working on a Mass Basis 713 13.2.1 Evaluating Enthalpy for Reacting 12.4 Analyzing Systems Involving Systems 787 Mixtures 714 13.2.2 Energy Balances for Reacting 12.4.1 Mixture Processes at Constant Systems 789 Composition 714 13.2.3 Enthalpy of Combustion and Heating 12.4.2 Mixing of ldeal Gases 721 Values 797 Psychrometric Applications 727 13-3 Determining the Adiabatic Flame Temperature 8o0 12.5 Introducing Psychrometric Principles 727 13.3.1 Using Table Data 801 12.5.1 Moist Air 727 13-3.2 Using Computer Software 801 12.5.2 Humidity Ratio,Relative Humidity,Mixture Enthalpy,and Mixture Entropy 728 13.3-3 Closing Comments 804 12.5-3 Modeling Moist Air in Equilibrium with 13.4 Fuel Cells 804 Liquid Water 730 13-4.1 Proton Exchange Membrane Fuel Cell 806 12.5.4 Evaluating the Dew Point Temperature 731 13.4.2 Solid Oxide Fuel Cell 808 12.5-5 Evaluating Humidity Ratio Using the 13.5 Absolute Entropy and the Third Law Adiabatic-Saturation Temperature 737 of Thermodynamics 808 12.6 Psychrometers:Measuring the Wet-Bulb 3.5.1 Evaluating Entropy for Reacting and Dry-Bulb Temperatures 738 Systems 809
Contents xv 11.8 p–y–T Relations for Gas Mixtures 675 11.9 Analyzing Multicomponent Systems 679 11.9.1 Partial Molal Properties 680 11.9.2 Chemical Potential 682 11.9.3 Fundamental Thermodynamic Functions for Multicomponent Systems 683 11.9.4 Fugacity 685 11.9.5 Ideal Solution 688 11.9.6 Chemical Potential for Ideal Solutions 689 Chapter Summary and Study Guide 690 12 Ideal Gas Mixture and Psychrometric Applications 705 Ideal Gas Mixtures: General Considerations 706 12.1 Describing Mixture Composition 706 12.2 Relating p, V, and T for Ideal Gas Mixtures 710 12.3 Evaluating U, H, S, and Specifi c Heats 711 12.3.1 Evaluating U and H 711 12.3.2 Evaluating cy and cp 712 12.3.3 Evaluating S 712 12.3.4 Working on a Mass Basis 713 12.4 Analyzing Systems Involving Mixtures 714 12.4.1 Mixture Processes at Constant Composition 714 12.4.2 Mixing of Ideal Gases 721 Psychrometric Applications 727 12.5 Introducing Psychrometric Principles 727 12.5.1 Moist Air 727 12.5.2 Humidity Ratio, Relative Humidity, Mixture Enthalpy, and Mixture Entropy 728 12.5.3 Modeling Moist Air in Equilibrium with Liquid Water 730 12.5.4 Evaluating the Dew Point Temperature 731 12.5.5 Evaluating Humidity Ratio Using the Adiabatic-Saturation Temperature 737 12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures 738 12.7 Psychrometric Charts 740 12.8 Analyzing Air-Conditioning Processes 741 12.8.1 Applying Mass and Energy Balances to Air-Conditioning Systems 741 12.8.2 Conditioning Moist Air at Constant Composition 743 12.8.3 Dehumidifi cation 746 12.8.4 Humidifi cation 750 12.8.5 Evaporative Cooling 752 12.8.6 Adiabatic Mixing of Two Moist Air Streams 755 12.9 Cooling Towers 758 Chapter Summary and Study Guide 761 13 Reacting Mixtures and Combustion 777 Combustion Fundamentals 778 13.1 Introducing Combustion 778 13.1.1 Fuels 779 13.1.2 Modeling Combustion Air 779 13.1.3 Determining Products of Combustion 782 13.1.4 Energy and Entropy Balances for Reacting Systems 786 13.2 Conservation of Energy— Reacting Systems 787 13.2.1 Evaluating Enthalpy for Reacting Systems 787 13.2.2 Energy Balances for Reacting Systems 789 13.2.3 Enthalpy of Combustion and Heating Values 797 13.3 Determining the Adiabatic Flame Temperature 800 13.3.1 Using Table Data 801 13.3.2 Using Computer Software 801 13.3.3 Closing Comments 804 13.4 Fuel Cells 804 13.4.1 Proton Exchange Membrane Fuel Cell 806 13.4.2 Solid Oxide Fuel Cell 808 13.5 Absolute Entropy and the Third Law of Thermodynamics 808 13.5.1 Evaluating Entropy for Reacting Systems 809 FMTOC.indd Page xv 10/14/10 2:09:08 PM user-f391 /Users/user-f391/Desktop/24_09_10/JWCL339/New File
xvi Contents 13.5.2 Entropy Balances for Reacting 14.3 Calculating Equilibrium Compositions 855 Systems 810 14-3.1 Equilibrium Constant for Ideal Gas 13.5-3 Evaluating Gibbs Function for Reacting Mixtures 855 Systems 815 14-3.2 Illustrations of the Calculation of Chemical Exergy 816 Equilibrium Compositions for Reacting 13.6 Conceptualizing Chemical Exergy 817 Ideal Gas Mixtures 858 14-3.3 Equilibrium Constant for Mixtures and 13.6.1 Working Equations for Chemical Solutions 863 Exergy 819 13.6.2 Evaluating Chemical Exergy for Several 14.4 Further Examples of the Use of the Cases 819 Equilibrium Constant 865 13.6.3 Closing Comments 821 14-4.1 Determining Equilibrium Flame 13.7 Standard Chemical Exergy 821 Temperature 865 14.4.2 Van't Hoff Equation 869 3-7.1 Standard Chemical Exergy of a Hydrocarbon: CH6822 14.4-3 lonization 870 13-7.2 Standard Chemical Exergy of Other 14.4.4 Simultaneous Reactions 871 Substances 825 Phase Equilibrium 874 13.8 Applying Total Exergy 826 14.5 Equilibrium between Two Phases 13.8.1 Calculating Total Exergy 826 of a Pure Substance 874 13.8.2 Calculating Exergetic Efficiencies 14.6 Equilibrium of Multicomponent, of Reacting Systems 829 Multiphase Systems 876 Chapter Summary and Study Guide 832 14.6.1 Chemical Potential and Phase Equilibrium 876 14 Chemical and Phase 14.6.2 Gibbs Phase Rule 879 Equilibrium 847 Equilibrium Fundamentals 848 Appendix Tables,Figures, 14.1 Introducing Equilibrium and Charts 889 Criteria 848 Index to Tables in SI Units 889 14.1.1 Chemical Potential and Index to Tables in English Units 937 Equilibrium 849 Index to Figures and Charts 985 14.1.2 Evaluating Chemical Potentials 850 Chemical Equilibrium 853 Index 996 14.2 Equation of Reaction Equilibrium 853 Answers to Selected Problems:Visit the 14.2.1 Introductory Case 853 student companion site at www.wiley.com/ 14.2.2 General Case 854 college/moran
xvi Contents 13.5.2 Entropy Balances for Reacting Systems 810 13.5.3 Evaluating Gibbs Function for Reacting Systems 815 Chemical Exergy 816 13.6 Conceptualizing Chemical Exergy 817 13.6.1 Working Equations for Chemical Exergy 819 13.6.2 Evaluating Chemical Exergy for Several Cases 819 13.6.3 Closing Comments 821 13.7 Standard Chemical Exergy 821 13.7.1 Standard Chemical Exergy of a Hydrocarbon: CaHb 822 13.7.2 Standard Chemical Exergy of Other Substances 825 13.8 Applying Total Exergy 826 13.8.1 Calculating Total Exergy 826 13.8.2 Calculating Exergetic Effi ciencies of Reacting Systems 829 Chapter Summary and Study Guide 832 14 Chemical and Phase Equilibrium 847 Equilibrium Fundamentals 848 14.1 Introducing Equilibrium Criteria 848 14.1.1 Chemical Potential and Equilibrium 849 14.1.2 Evaluating Chemical Potentials 850 Chemical Equilibrium 853 14.2 Equation of Reaction Equilibrium 853 14.2.1 Introductory Case 853 14.2.2 General Case 854 14.3 Calculating Equilibrium Compositions 855 14.3.1 Equilibrium Constant for Ideal Gas Mixtures 855 14.3.2 Illustrations of the Calculation of Equilibrium Compositions for Reacting Ideal Gas Mixtures 858 14.3.3 Equilibrium Constant for Mixtures and Solutions 863 14.4 Further Examples of the Use of the Equilibrium Constant 865 14.4.1 Determining Equilibrium Flame Temperature 865 14.4.2 Van’t Hoff Equation 869 14.4.3 Ionization 870 14.4.4 Simultaneous Reactions 871 Phase Equilibrium 874 14.5 Equilibrium between Two Phases of a Pure Substance 874 14.6 Equilibrium of Multicomponent, Multiphase Systems 876 14.6.1 Chemical Potential and Phase Equilibrium 876 14.6.2 Gibbs Phase Rule 879 Appendix Tables, Figures, and Charts 889 Index to Tables in SI Units 889 Index to Tables in English Units 937 Index to Figures and Charts 985 Index 996 Answers to Selected Problems: Visit the student companion site at www.wiley.com/ college/moran. FMTOC.indd Page xvi 10/14/10 2:09:09 PM user-f391 /Users/user-f391/Desktop/24_09_10/JWCL339/New File
FUNDAMENTALS OF ENG NEERING THERMODYNAMICS SE☑ENTH ED)IION
F U N D A M E N TA L S O F ENGINEERING THERMODYNAMICS SEVENTH EDITION FMTOC.indd Page 1 10/14/10 2:09:09 PM user-f391 /Users/user-f391/Desktop/24_09_10/JWCL339/New File