习题3.1 计算下列行列式: +2 ②3a-13 =(a+2)(a-5)+3=a2 ②3a-13|=(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2) 习题3.2 求从大到小的n阶排列(nn-1 1)的逆序数 解(n-1….21)=(m-1)+(m2+…+1+0=m(n= 习题3.3 1.在6阶行列式中,项a2a31a2asa1as和项aata1a5a6应各带有什么符号? 解因为a2a3a2aa1a5=a1a2a3 apass6s,而τ(4 65)=3+2+0+0+1+0=6,所以项 a2a3ala5a1a65带有正号 又因为项 aeaaauasia6a2a1a2aaa5as,而τ(452316)=3+3+1+1+0+0=8,所以项 aaea1a51a6a3带有正号 2.计算: 00 200 03000 解因为a1sa2a3a2a3的逆序数为t(54321)=5×4/2=10,带有正号,所以 00200=5×3×2×1×4=120 0100 习题3.4 计算
习题 3.1 计算下列行列式: ① 3 5 2 1 a a ② 2 1 2 3 1 3 1 2 1 a a a 解 ① 3 5 2 1 a a =(a+2)(a-5)+3=a 2-3a-7 ② 2 1 2 3 1 3 1 2 1 a a a =(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2) = a 3+2a 习题 3.2 求从大到小的 n 阶排列(n n-1 … 2 1)的逆序数. 解 τ(n n-1 … 2 1)=(n-1)+(n-2)+…+1+0= 2 n(n 1) 习题 3.3 1.在 6 阶行列式中,项 a23a31a42a56a14a65和项 a32a43a14a51a66a25应各带有什么符号? 解 因为 a23a31a42a56a14a65=a14a23a31a42a56a65,而τ(4 3 1 2 6 5)=3+2+0+0+1+0=6,所以项 a23a31a42a56a14a65带有正号. 又因为项 a32a43a14a51a66a25=a14a25a32a43a51a66,而τ(4 5 2 3 1 6)=3+3+1+1+0+0=8,所以项 a32a43a14a51a66a25带有正号. 2.计算: 4 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 5 解 因为 a15a24a33a42a51的逆序数为τ(5 4 3 2 1)=5×4/2=10,带有正号,所以 4 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 5 =5×3×2×1×4=120 习题 3.4 计算:
246427327 1014543443 34272162 24642732724610032 246132 解1014543443=1014 443=100×1014144 342721621342 62 习题3.5 1.计算下列行列式: 0 4-35 26 7253 2041000 2 解① 9-2-10 2-10 2|0100 13-37 -5100 4-3-26-5-3100 10-7 =13237=-5× 2.计算下列n阶行列式(n≥2) 00 0 a2
342 721 621 1014 543 443 246 427 327 解 342 721 621 1014 543 443 246 427 327 = 342 100 621 1014 100 443 246 100 327 =100× 342 1 621 1014 1 443 246 1 327 =-294×10 5 习题 3.5 1.计算下列行列式: ① 3 2 7 1 4 1 2 6 2 5 1 3 1 2 0 4 ② 4 3 2 6 7 2 5 3 3 1 4 2 2 4 3 5 解 ① 3 2 7 1 4 1 2 6 2 5 1 3 1 2 0 4 = 3 4 7 13 4 9 2 10 2 1 1 11 1 0 0 0 = 4 7 13 9 2 10 1 1 11 =-726 ② 4 3 2 6 7 2 5 3 3 1 4 2 2 4 3 5 = 5 3 10 0 13 2 3 7 0 1 0 0 10 4 13 3 = 5 10 0 13 3 7 10 13 3 = 5 0 0 13 23 7 10 7 3 =-5× 23 7 7 3 =-100 2. 计算下列 n 阶行列式(n≥2): ① b a a b a b a b 0 0 0 0 0 0 0 0 0 0 0 0 ② 1 2 1 1 0 0 1 0 0 1 0 0 0 1 1 1 n a a a
-1 (a-n) 1 b 00 b 0 00 a b 0 +(-1)b× 000 a+(-1)b 0 0 ②D=10 0=a-×D=1+(-1)“× n-1)(-1) 00 00 =a-D1+(-1)×(-1)" 00 =an-Dr--aa2.? an-jan-Dn-2-aaa2an-aaa2ar-? =a-an2…a2D2-anan2…a3a1…-a-an2a1a2…ant-a-aa2an3-aa2…an2
③ n n n n x x x x x x a x a a a a 1 2 3 1 2 1 1 2 3 1 0 0 0 0 0 0 0 0 0 ④ 1 1 1 ( 1) ( ) ( 1) ( ) ( 1) ( ) 1 1 1 a a a n a a a n a a a n n n n n n n 解 ① n n b a a b a b a b 0 0 0 0 0 0 0 0 0 0 0 0 = ( 1) ( 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 n n a a b a b a b a + ( 1) ( 1) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( 1) n n n a b b a b b b =a n+(-1) n+1b n ② Dn= 1 2 1 1 0 0 1 0 0 1 0 0 0 1 1 1 n a a a =an-1×Dn-1+(-1) n+1× 2 ( 1)( 1) 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 n n n a a = an-1Dn-1+(-1) n+1×(-1) 1+(n-1)× 2 ( 2)( 2) 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 n n n n a a a a =an-1Dn-1-a1a2…an-2 =an-1(an-2Dn-2-a1a2…an-3)-a1a2…an-2 =an-1an-2Dn-2-an-1a1a2…an-3-a1a2…an-2 … = an-1an-2…a2D2-an-1an-2…a3a1-…-an-1an-2a1a2…an-4-an-1a1a2…an-3-a1a2…an-2
arlan- a amlan-2"aga ar-laraja2"- a2 an-3 ana2 a arlan-2a2an-an-2"a arIan-aa2ard an-a1a2 am-3 ana2"ar-2 -(a2,an-∑ 1+x1a2a3…an-1a =anx1x2…xm+xDn=a1x1X2…xm1+xn(an1xx2…xm2+x-D=2) =anx1x2…xn1+xna-1x1X2…Xm2+xnX-D2 =anX1X2…X1+xnan-X1X 2+…+xnxn-1…xa3x1x2+x2xn-1…xxJD anx1x2…xm1+xa1-1X1x2…xn2+…+x1xn1…xa3x1x2+x2xn-…x1x3[(a1+x1)x2+a2x1] (a-1) (a-1) 4D (a-1) (a-1) =(-1)2[(-1)(-2)…(-n){(-1)(-2)…[-(n-1)]}…(-1) =2!3!.,n 3.计算下列n阶行列式(n≥1) +a2 11+ 1- x3 xn x x2-a x3-a x
= an-1an-2…a2 1 1 0 1 a -an-1an-2…a3a1-…-an-1an-2a1a2…an-4-an-1a1a2…an-3-a1a2…an-2 =-an-1an-2…a2-an-1an-2…a3a1-…-an-1an-2a1a2…an-4-an-1a1a2…an-3-a1a2…an-2 =- 1 1 2 1 1 ( ... ) n i i n a a a a ③ Dn= n n n n x x x x x x a x a a a a 1 2 3 1 2 1 1 2 3 1 0 0 0 0 0 0 0 0 0 = 1 2 1 1 1 1 ( 1) ( 1) ... n n n n n n a x x x x D =anx1x2…xn-1+xnDn-1=anx1x2…xn-1+xn(an-1x1x2…xn-2+xn-1Dn-2) =anx1x2…xn-1+xnan-1x1x2…xn-2+xnxn-1Dn-2 … =anx1x2…xn-1+xnan-1x1x2…xn-2+…+xnxn-1…x4a3x1x2+xnxn-1…x4x3D2 =anx1x2…xn-1+xnan-1x1x2…xn-2+…+xnxn-1…x4a3x1x2+xnxn-1…x4x3[(a1+x1)x2+a2x1] = ... ( ) 1 1 2 1 1 2 1 1 n i n n i i i n x x x x x x x a x x ④Dn+1= 1 1 1 ( 1) ( ) ( 1) ( ) ( 1) ( ) 1 1 1 a a a n a a a n a a a n n n n n n n = n n n n n n n n a a a a a a n a a a n ( 1) ( 1) ( 1) ( ) ( 1) ( ) 1 1 1 ( 1) 1 1 1 2 ( 1) = ( 1) [( 1)( 2) ( )]{( 1)( 2) [ ( 1)]} ( 1) 2 ( 1) n n n n =2!3!...n! 3.计算下列 n 阶行列式(n≥1): ① n a a a a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 ② x x x x a x x x a x x x a x a x x a x x x n n n n 1 2 3 1 2 3 1 2 3 1 2 3
+ a l1+ 1+0 11+a21 +a1 +a2 a2 11 0 00 =anDa1a2…an-1 a,(a,-Dn--aa, .a-2)-a,a,.a =ana-D2-ana1a2…an2-a1a2…an1 (a;≠0) x2 x2 a x-a x-ax-a x
解 ① Dn= n a a a a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 = n a a a a 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 3 2 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 a a a + n a a a a 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 3 2 1 = 0 0 0 1 0 0 1 0 0 1 0 0 1 3 2 1 a a a + nDn1 a =anDn-1-a1a2…an-1 =an(an-1Dn-2-a1a2…an-2)-a1a2…an-1 =anan-1Dn-2-ana1a2…an-2-a1a2…an-1 = n n i i i n a a a a a a a 1 2 1 1 1 1 ( ) = n i i n a a a a 1 1 2 1 1 (ai≠0) ②Dn= x x x x a x x x a x x x a x a x x a x x x n n n n 1 2 3 1 2 3 1 2 3 1 2 3 = x x x x a x x x a x x x a x a x x a x x x n n n n 1 2 3 1 2 3 1 2 3 1 2 3 0 0 0