第三节铺展与润湿 三润湿现象 润湿:固体(或液体)表面上的气体被液体取代的过程.润湿发生 的原因是它能使系统的表面吉布斯函数减小. 以下讨论润湿的三种类型.有关界面均取单位面积. 1.沾湿:气-固界面和气-液界面被液-固界面所取代的过程. 沾湿过程的吉布斯函数变为: △Ga=oSl-(o+G) 沾湿功W,:将单位面积已沾湿的液固界面 ·沾湿过程(动画) 再拉开所需的最小功 W,=-△G2 当△Ga<0时,W,'>0,沾湿为自发过程 16
16 第三节 铺展与润湿 三.润湿现象 润湿: 固体(或液体)表面上的气体被液体取代的过程. 润湿发生 的原因是它能使系统的表面吉布斯函数减小. 以下讨论润湿的三种类型. 有关界面均取单位面积. 1. 沾湿: 气-固界面和气-液界面被液-固界面所取代的过程. • 沾湿过程(动画) 沾湿过程的吉布斯函数变为: Ga =σsl - (σs +σl) 沾湿功Wa : 将单位面积已沾湿的液固界面 再拉开所需的最小功. Wa = - Ga 当 Ga < 0 时, Wa > 0, 沾湿为自发过程
第三节铺展与润湿 2.浸湿:固体浸入液体时气-固界面完全 被液-固界面所取代的过程. △G1=sl-o 浸湿功W:将单位面积已浸湿的液-固界 面再分开形成气一固界面,所需的最小功 浸湿过程(动画) W'=-△G 当△G<0,W'>0时,浸湿为自发过程. 粉末:W浸越大,润湿程度越大 ·剃须刀片不能在油中浸湿而浮于油的表面上. △G1=ol-o>0 若增大刀片重量迫使其下沉,则是在重 力场作用下的非自发浸湿过程,重力场做了 非体积功,正如电场可使非自发化学反应发 生一样 17
17 第三节 铺展与润湿 浸湿过程(动画) 2. 浸湿: 固体浸入液体时气-固界面完全 被液-固界面所取代的过程. Gi =σsl-σs 浸湿功Wi : 将单位面积已浸湿的液-固界 面再分开形成气-固界面, 所需的最小功. Wi = -Gi 当 Gi < 0, Wi > 0 时, 浸湿为自发过程. 粉末:W浸越大,润湿程度越大 • 剃须刀片不能在油中浸湿而浮于油的表面上. Gi =σ sl-σ s > 0 若增大刀片重量迫使其下沉, 则是在重 力场作用下的非自发浸湿过程, 重力场做了 非体积功, 正如电场可使非自发化学反应发 生一样
第三节 铺展与润湿 结合杨氏方程s一o=一c0s0可得到下列关系: △G,=小s--G=-G(c0s0+1) △G=Gs-G5 =-o cos0 △G、=Gs-o5+G=-G(c0s0-1) 对于给定系统,△G,<△G<△Gs,沾湿最易发生,铺展最难 沾湿,0<180°;浸湿,0<90°;铺展,0→0°或不存在. 习惯上称0<90°为润湿,0>90不润湿,0=180°完全不润 湿. 四应用: 软膏剂,矿物油不行,羊毛脂才行;外用散剂,片剂的崩解剂 防雨设备,农药配制,机械润滑,矿物浮选,注水采油,金属焊 接,印染及洗涤等方面都与润湿有关 18
18 结合杨氏方程 σls -σs=-σl cos 可得到下列关系: Ga =σls-σs-σl =-σl(cos + 1) Gi=σl s-σs =-σl cos Gs =σls-σs + σl =-σl(cos- 1) 对于给定系统, Ga < Gi < Gs , 沾湿最易发生, 铺展最难. 沾湿, < 180; 浸湿, < 90; 铺展, 0或不存在. 习惯上称 < 90为润湿, > 90不润湿, = 180完全不润 湿. 四.应用: 软膏剂,矿物油不行,羊毛脂才行;外用散剂,片剂的崩解剂 防雨设备, 农药配制, 机械润滑, 矿物浮选, 注水采油, 金属焊 接, 印染及洗涤等方面都与润湿有关. 第三节 铺展与润湿
第四节.高分散度对物理性质的影响 一.弯曲液面的附加压力—拉普拉斯方程 1.附加压力p、:表面张力的作用使弯曲液面内外产生的压力差 。人 P 弯曲液面的附加压力 附加压力总是指向液面的曲率中心,使凹面一侧的压力 P内比凸面一侧的p外高.定义,=P内一P外,总是大于零. 设截面周界线上表面张力的合力为F, F=2π1o0sa=2πr1Or1/r p,=F/(m2)=2πr2or(a12)=2σr ·附加压力与曲 2.拉普拉斯方程: 20 率半径的关系 19
19 第四节.高分散度对物理性质的影响 一.弯曲液面的附加压力——拉普拉斯方程 1.附加压力ps : 表面张力的作用使弯曲液面内外产生的压力差. pl • 弯曲液面的附加压力 pg ps ps pg pl 附加压力总是指向液面的曲率中心, 使凹面一侧的压力 p内比凸面一侧的p外高. 定义ps = p内- p外, 总是大于零. r • 附加压力与曲 率半径的关系 A B O O1 r1 设截面周界线上表面张力的合力为F, F = 2 r1 cos = 2 r1 r1 /r p s = F/ (r1 2) = 2 r1 2 /r(r1 2) = 2 /r 2.拉普拉斯方程:
第四节.高分散度对物理性质的影响 26 拉普拉斯公式: Ps 描述一个曲面需要两个曲率半径,只有曲面为球面时,二 个曲率半径才等同。 描述一小部分曲面的两个曲率半径分别为r和r2 p,=a(1+L) r ■对于平面,两曲率半径为无限大,,P。=0. 膜内气泡 4( 拉普拉斯Laplace)方程,是表面化学的基本定律之一,适 用任意曲面,它表明附加压力与表面张力成正比,与曲 率半径成反比,即曲率半径越小,附加压力越大。 ■ 20
20 第四节.高分散度对物理性质的影响 拉普拉斯公式: 描述一个曲面需要两个曲率半径,只有曲面为球面时,二 个曲率半径才等同。 描述一小部分曲面的两个曲率半径分别为r1和r2 § 对于平面,两曲率半径为无限大,,Ps =0. 膜内气泡 拉普拉斯(Laplace) 方程,是表面化学的基本定律之一,适 用任意曲面,它表明附加压力与表面张力成正比,与曲 率半径成反比,即曲率半径越小,附加压力越大。 § ) 1 1 ( 1 2 r r p s r ps 2 r 4 σ p s