df(t) a1=SF(S)-f(0.) d f(t) 指的n21=SF(S)-f(0)-f(0) =S2F(S)-Sf(0)-f(0 d f( =S"F(S)-S”f(0)-s"f(0) dt
推广: ] ( ) [ 2 2 dt d f t L [ ( ) (0 )] (0 ) − − = S SF S − f − f ( ) (0 ) (0 ) 2 − − = S F S − Sf − f ] ( ) [ n n dt d f t L (0 ) ( ) (0 ) (0 ) ( 1) 1 2 − − − − − − − − = − − n n n n f S F S S f S f ] ( ) (0 ) ( ) [ = SF S − f − dt df t L
2频域导数性质 设:Df()=F(S) 则:L-f()= dF(S) 证 /(k=((-0e"h Ll-tf(t) 推广:Lr"f(1)=(-F(S) ds
2.频域导数性质 dS dF S L tf t ( ) 则: [− ( )] = − 0− f (t)e dt ds 证:d st − − = − 0 f (t)( t)e dt s t = L[−tf (t)] 设:L[ f (t)] = F(S) n n n n dS d F S L t f t ( ) 推广: [ ( )] = (−1)
L-纩(= dF(S) 例:Lte(t)= ds ss d n! 例2:Lt"6(t)=(-1) dS)s′S n+1 d 1 例3:L[te"]=-( ds st (S+a
) 1 ( dS S d 例1:L[t(t)] = − dS dF S L tf t ( ) [− ( )] = 2 1 S = ) 1 ( 1) ( ( ) ( ) dS S d n n n 2 L[t (t)] = − n 例 : 1 ! + = n S n ) 1 ( dS S a d + = − − 3 [ ] at 例 :L te 2 ( ) 1 S + a =
三、积分性质 设:Lf(t)=F(S) 则:Lnf(l=F(S) 证:/()=/(OM Lf()]= dt jo f(o)dtl F(S)=sLIS% /()dt -o /( )dr 2o LIl. f(t)dt]= F(S)
三、积分性质 ( ) 1 [ ( ) ] 0 F S S L f t dt t = − 则: [ ( )] [ ( ) ] 0 − = t f t dt dt d L f t L F(S) − − − = − =0 0 0 [ ( ) ] ( ) t t t sL f t dt f t dt = − t f t dt dt d f t 0 证 : ( ) ( ) 设 :L[ f (t)] = F(S) ( ) 1 [ ( ) ] 0 F S S L f t dt t = −
例13-4利用积分性质求函数f(t)=t的象函数。 解:由于f()=t=na(55 LI(]=LIE(5)d51=-Lle(t) 2 推广:L2 t=2 tdt L2]=1+2=2 S 推广:Lt"l n+1
0 2 0 1 [ ( )] 1 [ ( )] [ ( ) ] ( ) ( ) 13 4 ( ) s L t s L f t L d f t t d f t t t t = = = = = − = 解:由于 例 利用积分性质求函数 的象函数。 3 2 2 [ ] s 推广:L t = = t t tdt 0 2 2 0 3 2 [ ] 2 [ ] [2 ] 2 s s L t L t L tdt t = = = 1 ! [ ] + = n n s n 推广:L t