四、延迟性质 f(tE(t-to f(tE(t) f(t-toE(t-to) 1时域延迟 设:Lf()=F(S)当t<t(时,f(t-t0)=0 则:Lf(t-t6)(-)=eF(S) 证:Lf(t-t1=f(t-tot t-to =T r f(t-to Je dt=o f(c e-s(+la eof(c)esdt e F(s
四、延迟性质 1.时域延迟 f( t) (t) t t f( t- t 0 ) ( t- t0 ) t0 f(t) ( t- t0 ) t t0 [ ( ) ( )] ( ) 0 L f t t 0 t t 0 e F S −st 则: − − = L f t t f t t e dt −st − = − − 0 0 0 证 : [ ( )] ( ) f t t e dt f e d s t s t t ( ) 0 0 0 0 ( ) ( ) − − + − = − = e f e d st s − − − = 0 ( ) 0 ( ) 0 e F S −st = − = 0 令 t t 设 : L[ f (t)] = F(S) 当t t0 时 , f (t − t0 ) = 0
例135求图示矩形脉冲的象函数 f(0 ∫()=E(t)-E(t-T) F(S) ST e f(t ∫(t)=|(t)-(t-T)l ST e F(S) 2
例13-5 求图示矩形脉冲的象函数 1 T t f(t) f (t) = (t) − (t − T) ST e S S F S − = − 1 1 ( ) T T f(t) f (t) = t[ (t) − (t − T)] 2 2 1 ( ) S e S F S −ST = −
频域平移性质 设:Lf(t)=F(S) 则:Leaf()=F(S+a) 证ef(kt f(t)e (s+a)t dt =F(S+a)
2、频域平移性质 e f t e dt − t −s t 0 − ( ) 证 : [ ( )] ( ) = + − L e f t F S 则: t f t e dt (s a)t 0 ( ) − + = 设 :L[ f (t)] = F(S) = F(s +)
小结: 积分 ←微分 6()e()t()…t(t) 2 n+1 sin ate(t) cos ote(t) ee(t) e at sin ate(t) 2 2 S2+ 2 + s+a (S+a)2+o2 e t"a(t) LIf(t-to)a(t-to=eF(S) (S+a)+
积分 (t) (t) t (t) t (t) n 1 1 S 2 S 1 1 ! + n S n sint (t) cost (t) e ( ) - t t e sin ( ) - t t t e ( ) - t t t n 2 2 S + 2 2 S + S S + 1 2 2 ( ) S + + 1 ( ) ! + + n S n 小结: [ ( ) ( )] ( ) 0 L f t t 0 t t 0 e F S −st − − = 微分