学习 学习就是对信息进行编码,其目的就是通过向 有限个例子(训练样本)的学习来找到隐藏 在例子背后(即产生这些例子)的规律(如 函数形式)
学习 ◼ 学习就是对信息进行编码,其目的就是通过向 有限个例子(训练样本)的学习来找到隐藏 在例子背后(即产生这些例子)的规律(如 函数形式)
编码 ■我们使用状态级(behavioristic)编码准 则。如果输入激励为飞,而响应为 , 则为系统学会了激励一响应对 ■输输对 表示函数 的一 个采样。函数将维矢量X映射到p维矢量Y
编码 ◼ 我们使用状态级(behavioristic)编码准 则。如果输入激励为 ,而响应为 , 则认为系统学会了激励-响应对 。 ◼ 输入输出对 表示函数 的一 个采样。函数将n维矢量X映射到p维矢量Y xi yi ( , ) i i x y ( , ) i i x y : n p f R R →
学习过程 ■由所有的输入X得到响应Y=(x) 那么系统就学习了函数
学习过程 ◼ 由所有的输入 得到响应 那么系统就学习了函数。 X Y f X = ( )
学习过程 ■若输入X≈X系统就会得到响 应y≈Y=f(x), 侧表明系统近似 或部分的学习了函数,即系统把 相似的输入映射为相似的输出, 由此估计出一个连续的函数
学习过程 ◼ 若输入 系统就会得到响 应 ,则表明系统近似 或部分的学习了函数,即系统把 相似的输入映射为相似的输出, 由此估计出一个连续的函数。 / X X ( ) / Y Y f X =
学习与改变 当样本数据改变系统参数时,系统学习、 自适应或自组织这些改变。在神经网络 中表现为突触的改变,而不是神经元的 改变(尽管有时神经元也学习新的状 态) 注:突触的改变就是权值的学习过程, 而神经元的改变只是网络的演化
学习与改变 ◼ 当样本数据改变系统参数时,系统学习、 自适应或自组织这些改变。在神经网络 中表现为突触的改变,而不是神经元的 改变(尽管有时神经元也学习新的状 态)。 ◼ 注:突触的改变就是权值的学习过程, 而神经元的改变只是网络的演化