基于精英重组的混合多目标进化算法

针对多目标进化算法搜索效率低和收敛性差的问题,提出了基于精英重组的混合多目标进化算法,将多目标优化问题分解为多个单目标优化问题单独求解,并采用基于遗传算法的精英重组策略将多个相异解重组生成唯一的精英解.提出区域化的种群初始化方法,改进局部搜索及群体选择机制,采用以优化子群为核心的分组交叉策略及自适应多位变异算子,并引入基于混沌优化的重启机制,有效克服了精英保存的固有缺陷,以及现有多目标进化算法存在的目标空间解拥挤、收敛慢、易早熟等问题.多目标测试函数的数值仿真和关键步骤的性能分析证明了本文算法的有效性和优越性.
文件格式:PDF,文件大小:1.52MB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录