基本概念一致收敛Cauchy准则Weierstrass判别法Dirichlet判别法Abel判别法Dini定理-例 4 设 Sn(a) = 2n2ce-n2" (n = 1, 2, ..), a E [0, 1]. 则有S(α) = lim Sn(α) = 0.n-7x显然Sn(c)和S(αc)都在[0,1]上可积,但?1/ (-e-n'a")'da = 1 - e-n2 → 1, (n → ),Sn(a)da =JoS(α) dc = 0.此例说明即便Sn(α)和它的极限函数S(c)都在区间[a,b]可积,一般也不一定有nblimS(a)daSn(α) dc =n→8返回全屏关闭退出6/36
ÄVg Âñ Cauchy OK Weierstrass O{ Dirichlet O{ Abel O{ Dini ½n ~ 4 Sn(x) = 2n 2xe−n 2x 2 (n = 1, 2, · · ·), x ∈ [0, 1]. Kk S(x) = lim n→∞ Sn(x) = 0. w, Sn(x) Ú S(x) Ñ3 [0, 1] þÈ, Z 1 0 Sn(x) dx = Z 1 0 (−e −n 2x 2 ) 0dx = 1 − e −n 2 → 1, (n → ∞), Z 1 0 S(x) dx = 0. d~`²=B Sn(x) Ú§4¼ê S(x) Ñ3«m [a, b] È, ؽk lim n→∞ Z b a Sn(x) dx = Z b a S(x) dx. 6/36 kJ Ik J I £ ¶ '4 òÑ