Purines and pyrimidines provide the nitrogenous bases in nucleic adds, Thepurineandpyrimidine'rings show the general structures of each type of base, the numbers identify the positions on the ring N H H 2 CH Cytosine
DNA的一级结构 就是指4种核苷酸的连接及其排列顺序,表示了 该DNA分子的化学构成。 核苷酸序列对DNA高级结构的形成有很大影响。 例如:BDNA中多聚(G-C)区易出现左手螺旋 DNA (Z-DNA) 反向重复的DNA片段易出现发卡式结构等
DNA的一级结构: 就是指4种核苷酸的连接及其排列顺序,表示了 该DNA分子的化学构成。 核苷酸序列对DNA高级结构的形成有很大影响。 例如: B-DNA中多聚(G-C)区易出现左手螺旋 DNA(Z-DNA); 反向重复的DNA片段易出现发卡式结构等
DNA不仅具有严格的化学组成,还具有特 殊的高级结构,它主要以有规则的双螺旋形式 存在,其基本特点是: 1、DNA分子是由两条互相平行的脱氧核苷酸长 链盘绕而成的。 2、DNA分子中的脱氧核糖和磷酸交替连接,排 在外侧,构成基本骨架,碱基排列在内侧
DNA不仅具有严格的化学组成,还具有特 殊的高级结构,它主要以有规则的双螺旋形式 存在,其基本特点是: ▪ 1、DNA分子是由两条互相平行的脱氧核苷酸长 链盘绕而成的。 ▪ 2、DNA分子中的脱氧核糖和磷酸交替连接,排 在外侧,构成基本骨架,碱基排列在内侧
3、两条链上的碱基通过氢键相结合,形成碱基对, 它的组成有一定的规律 这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能 与胸腺嘧啶(τ)配对,鸟嘌呤(G)只能与胞嘧啶 (C)配对。如一条链上某一碱基是C,另一条链上 与它配对的碱基必定是G。碱基之间的这种一一对应 的关系叫碱基互补配对原则 组成DNA分子的碱基虽然只有4种,它们的配对 方式也只有A与T,C与G两种,但是,由于碱基可以 任何顺序排列,构成了DNA分子的多样性 例如,某DNA分子的一条多核苷酸链有100个不 同的碱基组成,它们的可能排列方式就是4100
▪3、两条链上的碱基通过氢键相结合,形成碱基对, 它的组成有一定的规律。 这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能 与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶 (C)配对。如一条链上某一碱基是C,另一条链上 与它配对的碱基必定是G。碱基之间的这种一一对应 的关系叫碱基互补配对原则。 组成DNA分子的碱基虽然只有4种,它们的配对 方式也只有A与T,C与G两种,但是,由于碱基可以 任何顺序排列,构成了DNA分子的多样性。 例如,某DNA分子的一条多核苷酸链有100个不 同的碱基组成,它们的可能排列方式就是4 100
The accuracy of translation relies on the specificity of base pairing. The actual rate in bacteria seems to be--10-8-10-10. This corresponds to-1 error per genome per 1000 bacterial replication cycles, or-10-6 per gene per generation. DNA polymerase might improve the specificity of complementary base selection at either (or both)of two stages: It could scrutinize the incoming base for the proper complementarity with the template base; for example, by specifically recongnizing matching chemical features This would be a presynthetic error control. Or it could scrutinize the base pair after the new base has been added to the chain and in those cases in which a mistake has been made remove the most recently added base. This would be a proofreading control
The accuracy of translation relies on the specificity of base pairing. The actual rate in bacteria seems to be --10-8-10-10. This corresponds to -1 error per genome per 1000 bacterial replication cycles, or -10-6 per gene per generation. DNA polymerase might improve the specificity of complementary base selection at either (or both) of two stages: It could scrutinize the incoming base for the proper complementarity with the template base; for example, by specifically recongnizing matching chemical features. This would be a presynthetic error control. Or it could scrutinize the base pair after the new base has been added to the chain, and, in those cases in which a mistake has been made, remove the most recently added base. This would be a proofreading control