基于互信息的多关系朴素贝叶斯分类器

为进一步提高多关系朴素贝叶斯方法的分类准确率,分析了已有的剪枝方法,并扩展互信息标准到多关系情况下.基于元组号传播方法和面向元组的统计计数方法,给出了基于扩展互信息标准进行属性选择的方法和步骤,并建立了一种基于扩展互信息的多关系朴素贝叶斯分类器.标准数据集上的实验显示,基于扩展互信息标准进行属性选择,可以在不增加算法时间复杂度的前提下,找到与分类属性最相关的属性,并在仅有极少属性参与分类时,得到较高的分类准确率.Mutagenesis数据集上的实验则显示,这种属性选择可以使多关系问题退化为单关系问题,大大降低了分类代价.
文件格式:PDF,文件大小:367.82KB,售价:1.44元
文档详细内容(约4页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录