北京科技大学学报:幂律流体在旋转盘上的流动与传热数值分析

针对非牛顿幂律流体在无限大旋转圆盘上层流边界层内三维流动与传热问题,在普朗特数为常数的条件下,利用广义Karman相似变换,将连续方程、动量方程及能量方程形成的偏微分方程组化成常微分方程组,再采用多重打靶法数值求解非线性两点边值问题.分别针对剪薄型流体、牛顿流体和剪厚型流体,得到不同幂律指标下的速度和温度分布及不同普朗特数下温度场的结果.结果表明径向速度分量的峰值随幂律指标的增大而增大,轴向速度受边界层厚度的影响较突出,盘表面的传热随幂律指标和普朗特数都呈现递增趋势.最后将本文流场结果与Andersson等在不考虑传热情况下的结果进行比较表明吻合性较好.
文件格式:PDF,文件大小:476.35KB,售价:1.8元
文档详细内容(约5页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录