3.5.1凸点3.5.2Jensen不等式Holder不等式现设c,yEI及任意自然数n,m(n<m),在(3.1)中令ci=.=an=,an+1=..·=m=y得到n"α+(1-"))≤"f(a)+(1-")f()fmm即,对任意有理数rE(0,1),有f(ra+(1-r)y)≤rf(α)+(1-r)f(y)对于任意实数αE(0,1),可取趋于α的有理数列rnE(0,1).将上式中的r换成rn,并令n→o,根据f的连续性,就得到f (aa+ (1-α)y)≤αf(α)+(1-a)f(y)这就证明了f是I上的凸函数.证毕返回全屏关闭退出6/32
3.5.1 3.5.2 Jensen ت H¨older ت à: y x, y ∈ I, 9?¿g,ê n, m (n < m), 3 (3.1) ¥- x1 = · · · = xn = x, xn+1 = · · · = xm = y, f n m x + (1 − n m )y 6 n m f(x) + (1 − n m )f(y). =, é?¿knê r ∈ (0, 1), k f (rx + (1 − r)y) 6 rf(x) + (1 − r)f(y). éu?¿¢ê α ∈ (0, 1), ªu α knê rn ∈ (0, 1). òþª¥ r ¤ rn, ¿- n → ∞, â f ëY5, Ò f (αx + (1 − α)y) 6 αf(x) + (1 − α)f(y). ùÒy² f ´ I þà¼ê. y. 6/32 kJ Ik J I £ ¶ '4 òÑ
凸点3.5.13.5.2Jensen不等式Holder不等式证法2(反证法)若f(α)不是I上的凸函数,则存在a1,a2EI,及CoE(1,a2)使得f(aco) -f(i) f(c2) -f(α1)Co-Ci2-1即,f(c2) -f(1)f(co) >f(ci) +(ro - ci).C2—1构造线性函数g(z) = f(1) + f(a) - f(a1)(-i)C2-1它的图像是连接(a1,f(aci))和(a2,f(2))的弦,因此有g(ci) = f(aαi), g(α2) =f(α2), f(co)>g(co).令h(α) = f(α) -g(α)则h()=h(c2)=0, h(ao)>0.返回全屏关闭退出7/32
3.5.1 3.5.2 Jensen ت H¨older ت à: y{ 2 (y{) e f(x) Ø´ I þà¼ê, K3 x1, x2 ∈ I, 9 x0 ∈ (x1, x2) ¦ f(x0) − f(x1) x0 − x1 > f(x2) − f(x1) x2 − x1 , =, f(x0) > f(x1) + f(x2) − f(x1) x2 − x1 (x0 − x1). E5¼ê g(x) = f(x1) + f(x2) − f(x1) x2 − x1 (x − x1). §ã´ë (x1, f(x1)) Ú (x2, f(x2)) u, Ïdk g(x1) = f(x1), g(x2) = f(x2), f(x0) > g(x0). - h(x) = f(x) − g(x). K h(x1) = h(x2) = 0, h(x0) > 0. 7/32 kJ Ik J I £ ¶ '4 òÑ