The Ferrel Cell Review The balance equations: Tropopause a[u**] fu <0 Oy Ferrel Cell: eddy-driven, 70t auoD+f网+F到 by indirect cell a0。_80*w 00s ∠0 wOp a01>0 Oy by 00s a(0*u*]) + ∂t ap by Cp Boundary fv ~rusurf>0 layer Ground Subtropics Latitude Subpolar 12
! @✓s @p ⇠ @[✓⇤v⇤] @y < 0 ! @✓s @p ⇠ @[✓⇤v⇤] @y > 0 fv ⇠ @[u⇤v⇤] @y < 0 12 n The balance equations: The Ferrel Cell @[✓] @t + [!] @✓s @p = @([✓⇤v⇤]) @y + ✓po p ◆R/cp [Q] cp @[u] @t = @([u⇤v⇤]) @y + f[v]+[Fx] Ferrel Cell: eddy-driven, indirect cell Review
Baroclinic eddies E-P flux In a QG,steady,adiabatic and frictionless flow: f[v] ∂([u*v*]) Momentum equation: =0 Continuity equation: ∂[ 1,∂w ay p =0V·F=0 Thermodynamic equation: :+ ∂([0*w*]) =0 ap Oy 1 Define Eliassen-Palm flux: w=一 品 [0*v1】 ∂0s/ap F三-w*j+f091k ∂0s/∂p 授课教师:张洋3
f[v]@([u⇤v⇤]) @y = 0 [!] @✓s @p + @([✓⇤v⇤]) @y = 0 [!] = @ @y ✓ [✓⇤v⇤] @✓s/@p ◆ [v] = 1 f @ @y ([u⇤v⇤]) F ⌘ [u⇤v⇤] j + f [v⇤✓⇤] @✓s/@p k r · F = 0 授课教师:张洋 13 Baroclinic eddies - E-P flux @[v] @y + @[!] @p = 0 n Momentum equation: n Continuity equation: n Thermodynamic equation: n In a QG, steady, adiabatic and frictionless flow: Define Eliassen-Palm flux:
Baroclinic eddies E-P flux *91k 下=-u**1j+f0/m In a QG,steady,adiabatic and frictionless flow: 网=}8ww)=品 [0*v1 7.F=0 ■In a QG,steady flow: f-+=0 By lop R/CP (Q]=0 Cp The meridional overturning flow,in addition to the eddy forcing,has to balance the external forcing. 授课教师:张洋14
[!] = @ @y ✓ [✓⇤v⇤] @✓s/@p ◆ [v] = 1 f @ @y ([u⇤v⇤]) F ⌘ [u⇤v⇤] j + f [v⇤✓⇤] @✓s/@p k r · F = 0 f[v]@([u⇤v⇤]) @y + [Fx]=0 [!] @✓s @p + @([✓⇤v⇤]) @y ✓po p ◆R/cp [Q] cp = 0 授课教师:张洋 14 Baroclinic eddies - E-P flux n In a QG, steady, adiabatic and frictionless flow: n In a QG, steady flow: The meridional overturning flow, in addition to the eddy forcing, has to balance the external forcing