第七章时间序列分析 (Time Series Analysis)
第七章 时间序列分析 (Time Series Analysis)
第一节时间序列分析的基本概念 经济分析通常假定所研究的经济理论中涉及的 变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。 然而,经验研究表明,在大多数情况下,时间 序列变量并不满足这一假设,从而产生所谓的“伪 归”问题( spurious' regression problem)。 为解决这类问题,研究人员提出了不少对传统 估计方法的改进建议,其中最重要的两项是对变量 的非平稳性( non-stationarity)的系统性检验和协整 (cointegration)
第一节 时间序列分析的基本概念 经济分析通常假定所研究的经济理论中涉及的 变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。 然而,经验研究表明,在大多数情况下,时间 序列变量并不满足这一假设,从而产生所谓的“伪 回归”问题(‘spurious’ regression problem)。 为解决这类问题,研究人员提出了不少对传统 估计方法的改进建议,其中最重要的两项是对变量 的非平稳性 (non-stationarity) 的系统性检验和协整 (cointegration)
协整 协整分析被认为是上世纪八十年代中期以来计量 经济学领域最具革命性的进展。简单地说,协整分 析涉及的是一组变量,它们各自都是不平稳的(含 义是随时间的推移而上行或下行),但它们一起漂 移。这种变量的共同漂移使得这些变量之间存在长 期的线性关系,因而使人们能够研究经济变量间的 长期均衡关系。如果这些长时间内的线性关系不成 立,则对应的变量被称为是“非协整的”(not cointegrated)
协整 协整分析被认为是上世纪八十年代中期以来计量 经济学领域最具革命性的进展。简单地说,协整分 析涉及的是一组变量,它们各自都是不平稳的(含 义是随时间的推移而上行或下行),但它们一起漂 移。这种变量的共同漂移使得这些变量之间存在长 期的线性关系,因而使人们能够研究经济变量间的 长期均衡关系。如果这些长时间内的线性关系不成 立,则对应的变量被称为是 “非协整的” (not cointegrated)
误差修正模型 般说来,协整分析是用于非平稳变量组成的关 系式中长期均衡参数估计的技术。它是用于动态模 型的设定、估计和检验的一种新技术。 此外,协整分析亦可用于短期或非均衡参数的估 计,这是因为短期参数的估计可以通过协整方法使 用长期参数估计值,采用的模型是误差修正模型 (error correction model) 在介绍上述方法之前,下面先介绍所涉及的一些 术语和定义
误差修正模型 一般说来,协整分析是用于非平稳变量组成的关 系式中长期均衡参数估计的技术。它是用于动态模 型的设定、估计和检验的一种新技术。 此外,协整分析亦可用于短期或非均衡参数的估 计,这是因为短期参数的估计可以通过协整方法使 用长期参数估计值,采用的模型是误差修正模型 (error correction model)。 在介绍上述方法之前,下面先介绍所涉及的一些 术语和定义
平稳性( Stationarity) 1.严格平稳性( strict stationarity) 如果一个时间序列Ⅹ的联合概率分布不随时间而 变,即对于任何n和k,X1,X2,,Xn的联合概率分布 与X1+xX2+,Xn+k的联合分布相同,则称该时间序列 是严格平稳的
一 . 平稳性(Stationarity) 1. 严格平稳性 (strict stationarity) 如果一个时间序列Xt的联合概率分布不随时间而 变,即对于任何n和k,X1 ,X2 ,…,Xn的联合概率分布 与X1+k,X2+k,…Xn+k 的联合分布相同,则称该时间序列 是严格平稳的