匀变速直线运动的位移与时间的 关系
3 匀变速直线运动的位移与时间的 关系
预习新知一努 目标导航 1知道匀速直线运动的位移与图象中矩形面积的对应 关系。 学习2.理解匀变速直线运动的位移与v图象中四边形面积的 目标 对应关系,感受利用极限思想解决物理问题的科学思维方 法。 3掌握匀变速直线运动的位移公式会应用这一公式对实 际问题进行分析和计算。 点重点匀变速直线运动的位移与时间的关系及其应用。 难难点物理思想方法的渗透。 点
目标导航 学习 目标 1.知道匀速直线运动的位移与 v-t 图象中矩形面积的对应 关系。 2.理解匀变速直线运动的位移与 v-t 图象中四边形面积的 对应关系,感受利用极限思想解决物理问题的科学思维方 法。 3.掌握匀变速直线运动的位移公式,会应用这一公式对实 际问题进行分析和计算。 重点:匀变速直线运动的位移与时间的关系及其应用。 难点:物理思想方法的渗透
激趣诱思 图为一航天飞机着陆时的情景,假设一架航天飞机在一条笔直 的水平跑道上着陆刚着陆时速度为100m/s在着陆的同时立即打 开阻力伞,你知道这是什么原因吗?假设此时航天飞机的加速度大小 为4ms2,研究一下,这条跑道至少要多长? 简答打开阻力伞是为了增大减速的加速度;可以用vt图象求 出跑道长度,也可以用位移公式求出,由x=+ap2及0=+at解 x=1250m
激趣诱思 图为一航天飞机着陆时的情景,假设一架航天飞机在一条笔直 的水平跑道上着陆,刚着陆时速度为 100 m/s,在着陆的同时立即打 开阻力伞,你知道这是什么原因吗?假设此时航天飞机的加速度大小 为 4 m/s2 ,研究一下,这条跑道至少要多长? 简答:打开阻力伞是为了增大减速的加速度;可以用 v-t 图象求 出跑道长度,也可以用位移公式求出,由 x=v0t+ 1 2 at2及 0=v0+at 解得 x=1 250 m
预习导引 1匀速直线运动的位移 (1)做匀速直线运动的物体在时间t内的位移x=yto (2)做匀速直线运动的物体如图所示,其vt图象是一条平行于 时间轴的直线其位移在数值上等于v-t图线与对应的时间轴所包 围的矩形的面积
预习导引 1.匀速直线运动的位移 (1)做匀速直线运动的物体在时间 t 内的位移 x=vt。 (2)做匀速直线运动的物体,如图所示,其 v-t 图象是一条平行于 时间轴的直线,其位移在数值上等于 v-t 图线与对应的时间轴所包 围的矩形的面积
2匀变速直线运动的位移 位移在μ-t图象中的表示:做匀变速直线运动的物体的位移对 应着v图象中的图线和时间轴包围的面积。如图所示,在0~t时间 内的位移大小等于梯形的面积。 0 3位移公式x=0t+=ar2 (1)公式中的x、0、a均是矢量,应用公式时,应先确定正方 向 (2)当=0时x=2表示初速度为零的匀加速直线运动的位移 与时间的关系。 (3)当a=0时x=1,表示匀速直线运动的位移与时间的关系
2.匀变速直线运动的位移 位移在 v-t 图象中的表示:做匀变速直线运动的物体的位移对 应着 v-t 图象中的图线和时间轴包围的面积。如图所示,在 0~t 时间 内的位移大小等于梯 形的面积。 3.位移公式 x=v0t+ 1 2 a t2 (1)公式中的 x、v0、a 均是矢量,应用公式时,应先确定正方 向。 (2)当 v0=0 时,x= 1 2 a t2 ,表示初速度为零的匀加速直线运动的位移 与时间的关系。 (3)当 a =0 时,x=v0t,表示匀速直线运动的位移与时间的关系