第五章频率响应法 相频率特性(杂氏图 G()=(O)+g(O)Q(o) G(o 实频特性 虚频特性 A(0 A)=1G(o)=√P(o)+Q(o) (a q()=∠G(jo)= arctan q() P(O=A(@)cOS(O P(O O(O=A(Osin ( o) 将极坐标系与直角坐标系重合 取极点为原点,横轴为极坐标 Q(o) P(o) o)-频率特性的指数形式可 P() 以用向量来表示 西安电子科技大学 IAEI 舵天电子信息研宠所
第五章 频 率 响 应 法 12 西安电子科技大学 航天电子信息研究所12 IAEI 1. 幅相频率特性(奈氏图) G j P jQ ( ) ( ) ( ) = +2 2 A G j P Q ( ) ( ) ( ) ( ) = = + ( ) ( ) ( ) arctan ( ) Q G j P = = P A ( ) ( )cos ( ) = Q A ( ) ( )sin ( ) = 实频特性 虚频特性 将极坐标系与直角坐标系重合, 取极点为原点,横轴为极坐标 频率特性的指数形式可 以用向量来表示 P( ) Q( )
第五章频率响应法 1.幅相频率特性(奈氏图) ·幅相频率特性曲线,又称为NquG(/o)=A(O)e0 当输入信号的频率→0~∞变化时,向量G(j) 的幅值和相位也随之作相应的变化,其端点在复平面上移动的轨迹称为 极坐标图:奈奎斯特( Nyquist)曲线又称奈氏图 jO(O C G(O A(O) q() P( 西安电子科技大学 IAEI 舵天电子信息研宠所
第五章 频 率 响 应 法 13 西安电子科技大学 航天电子信息研究所13 IAEI 1. 幅相频率特性(奈氏图) ▪ 幅相频率特性曲线,又称为Nyquist图 ( ) ( ) ( ) j G j = A e 变化时,向量 G( j) 的幅值和相位也随之作相应的变化,其端点在复平面上移动的轨迹称为 极坐标图:奈奎斯特(Nyquist)曲线,又称奈氏图 当输入信号的频率 → 0 ~ jQ( ) P( )
第五章频率响应法 Ggo) e jaret(ar) √τ2o2+1 arctan(0)=0 丌 arctan (+oo X(O) (0 A() 图5-3RC电路的奈氏图 西安电子科技大学 IAEI 舵天电子信息研宠所
第五章 频 率 响 应 法 14 西安电子科技大学 航天电子信息研究所14 IAEI 图 5-3 RC电路的奈氏图 jY( ) →∞ 0 A( ) ( ) X( ) 1 = 0 ( ) 2 2 1 1 ( ) jarctg i s s e U τ U G j − + = = arctan(0) 0 = arctan( ) 2 + =
第五章频率响应法 2.对数频率特性(伯德图) 在工程实际中常常将频率特性画成对数坐标图形式这种对数频率 特性曲线又称伯德图,由对数幅频特性和对数相频特性组成。 分别求出系统的幅频特性和相频特性,并对幅频特性纵坐标取对数: 对数幅频特性L(O)=200gA()分贝(dB) 波德图bode(Gs 相频特性 的纵坐标 以logo为横坐标,以L(o)为纵坐标绘制对数幅频曲线; 不取对数 以logo为横坐标,以9o).纵坐标绘制对数相频曲线 db z(a) 10 0.1 a)对数幅频特性 b)对数相频特性 AEI 人电子信思死
第五章 频 率 响 应 法 15 西安电子科技大学 航天电子信息研究所15 IAEI 2. 对数频率特性(伯德图) 在工程实际中, 常常将频率特性画成对数坐标图形式, 这种对数频率 特性曲线又称伯德图, 由对数幅频特性和对数相频特性组成。 L() = 20log A() 分别求出系统的幅频特性和相频特性,并对幅频特性纵坐标取对数: 对数幅频特性 分贝(dB) 波德图bode(Gs) 以logω为横坐标,以L(ω)为纵坐标绘制对数幅频曲线; 以logω为横坐标,以 φ (ω) 为纵坐标绘制对数相频曲线。 相频特性 的纵坐标 不取对数
第五章频率响应法 ++++10 012345678910 (a)线性分度 图54对数分度和线性分度 L 345678910 203040506080100 1倍频程|1倍频程 1倍频程|1倍频程 10倍频程 10倍频程 10倍频程 b)对数分度 a/∞bo 34 8 10 g(o/wo) 00.301|0.4770.602|0.6990.788|0.845|0.903|0.9541
第五章 频 率 响 应 法 16 西安电子科技大学 航天电子信息研究所16 IAEI 图 5-4 对数分度和线性分度 0 1 2 3 4 5 6 7 8 9 10 (a) 线 性 分 度 0 L 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 80 100 1倍 频 程 1倍 频 程 1倍 频 程 1倍 频 程 10倍 频 程 10倍 频 程 10倍 频 程 (b) 对 数 分 度