今第五章角度调制与解调电路心 式中46=f0-f为△/(0的平均分量,表示调频信号的中 心频率由偏离到f,称为中心频率偏离量。 (2)非线性失真系数:评价调频特性非线性的参数 △f 2 mn THD= 2 m 4中心频率准确度和稳定度 接收机正常接收所必须满足的一项重要性能指标, 否则,调频信号的有效频谱分量就会落到接收机通频带 以外,造成信号失真,并干扰邻近电台信号
式中 f 0 = f 0 – f c 为 f(t) 的平均分量,表示调频信号的中 心频率由 f c偏离到 f 0,称为中心频率偏离量。 (2)非线性失真系数:评价调频特性非线性的参数 m1 2 2 m n f f THD n = = 4.中心频率准确度和稳定度 接收机正常接收所必须满足的一项重要性能指标, 否则,调频信号的有效频谱分量就会落到接收机通频带 以外,造成信号失真,并干扰邻近电台信号
今五章角度调制与解调电路 522在正弦振荡器中实现直接调频 一、工作原理及其性能分析 1.工作原理 把电容或电感量受调制信号控制的可变电抗器件 接入LC振荡回路中,便可实现调频。 2可变电抗器件的种类 (1)驻极体话筒或电容式话筒。作为可变电容器 件,用在便携式调频发射机中,可将声波的强弱变化 转换为电容量的变化。将它将入振荡回路当中,就可 直接产生瞬时频率按讲话声音强弱变化的调频信号
5.2.2 在正弦振荡器中实现直接调频 一、工作原理及其性能分析 1.工作原理 把电容或电感量受调制信号控制的可变电抗器件 接入LC振荡回路中,便可实现调频。 2.可变电抗器件的种类 (1)驻极体话筒或电容式话筒。作为可变电容器 件,用在便携式调频发射机中,可将声波的强弱变化 转换为电容量的变化。将它将入振荡回路当中,就可 直接产生瞬时频率按讲话声音强弱变化的调频信号
第五章角度调制与解调电路心 (2)铁氧化磁芯绕制的线圈。作为可变电感器件, 用在扫频图示测量仪中,改变通过附加线圈的电流来 控制磁场的变化,就能使磁芯的导磁率变化,从而使 主线圈的电感量变化。 (3)变容二极管。利用反偏工作ⅣN结呈现的势垒 电容而构成,是目前最广泛应用的可变电抗器件。具 有工作频率高、固有损耗小和使用方便等优点。 1.变容管作为振荡回路总电容的直接调频电路 (1)原理电路 为LC正弦振荡器中的谐振回路
(2)铁氧化磁芯绕制的线圈。作为可变电感器件, 用在扫频图示测量仪中,改变通过附加线圈的电流来 控制磁场的变化,就能使磁芯的导磁率变化,从而使 主线圈的电感量变化。 (3)变容二极管。利用反偏工作PN结呈现的势垒 电容而构成,是目前最广泛应用的可变电抗器件。具 有工作频率高、固有损耗小和使用方便等优点。 1.变容管作为振荡回路总电容的直接调频电路 (1)原理电路 为 LC 正弦振荡器中的谐振回路
五章、角摩调制与解调电路心 C;一变容管的结电容,与L共同构 成振荡器的振荡回路,振荡频率近似等于 回路的谐振频率,即oosc≈a0= LO C (2)性能分析 ①归一化调频特性曲线方程 已知变容管结电容C随外加电压ν变化的变容特性 C;(0 C1(v)= (1-v/VB) B-PN结的内建电位差, C(0)v=0时的结电容, n—变容指数,其值取决于PN结的的工艺结构, 在1/3到6之间
osc 0 = j 1 LC (2)性能分析 ①归一化调频特性曲线方程 已知变容管结电容 Cj随外加电压 v 变化的变容特性 n v V C C v (1 / ) (0) ( ) B j j - = VB — PN 结的内建电位差, Cj (0)— v = 0 时的结电容, n —变容指数,其值取决于 PN 结的的工艺结构, 在 1/3 到 6 之间。 Cj —变容管的结电容,与L 共同构 成振荡器的振荡回路,振荡频率近似等于 回路的谐振频率,即
今第五章角度调制与解调电路岭 为了保证变容管在调制信号电压变化范围内保证反 偏,必须外加反偏工作点电压-V,因此,加在变容管 上的总电压v=(1o+"),且pa<Fo,将它代入 C(0) (v)= 整理后得: (1-v/VB)” JO (1+x) 式中,C=C(0) Q (1+1o/VB)V Q +vB 其中,CQ-变容管在静态工作点上的结电容, x归一化的调制信号电压,其值恒小于1
为了保证变容管在调制信号电压变化范围内保证反 偏,必须外加反偏工作点电压 -VQ,因此,加在变容管 上的总电压 v = -( VQ + v ),且 v Ω < VQ,将它代入 式中, n x C C (1 ) j Q j + = n , V V C C (1 / ) (0) Q B j j Q + = VQ VB v x Ω + = 其中,CjQ —变容管在静态工作点上的结电容, x— 归一化的调制信号电压,其值恒小于 1。 n v V C C v (1 / ) (0) ( ) B j j - = 整理后得: