7.2.1 Filter Design by Impulse Invariance The impulse response of discrete-time system is defined by sampling the impulse response of a continuous-time system. h n =The (nTa) Relationship of two systems in frequency domain: ue)22+2w=n7 fH(2)=0,22π/Ta, then H-I号》b$x i.e.the continuous-time filter in one period is bandlimited,and 2s=22mx 0号 2 29
29 7.2.1 Filter Design by Impulse Invariance ◆The impulse response of discrete-time system is defined by sampling the impulse response of a continuous-time system. ( ) 0, , c d if H j T = ( ) ( ), j c d then H e H jT = Relationship of two systems in frequency domain: i.e. the continuous-time filter is bandlimited, and Ωs ≥2Ωmax in one period ( ) ( ) 2 , j c k d d H e H j j k T T =− = + . Td = h n T h nT = d c d ( ) = Td 2 , s Td =
relation between frequencies Relationship of 0=2T,-π<0<π,-∞<2<∞ two systems in frequency domain: e)立V号+ H.(Um=x7,e)号sx No Aliasing S plane 3z/T Z plane πTa 3π 0 one period π -π/Ta -3πT 32
relation between frequencies 32 , , = Td − − S plane Z plane - 3 / d T j / d T / d − T -3 / d T − ( ) ( ) j 2 c k d d H e H j j k T T =− = + ( ) 0, , c d if H j T = ( ) , j c d th T en H H e j = one period No Aliasing Relationship of two systems in frequency domain: −3 3-
No Aliasing in the Impulse Invariance e个三号+ 2π ifH(2)=0,2≥π/T, then A.0) No Aliasing H(ej) -2π -π π 2n 33
33 No Aliasing in the Impulse Invariance − ( ) 0, , c d if H j T = ( ) ( ), j c d H e H jT then = No Aliasing ( ) j 2 c k d d H e H j j k T T =− = +
Aliasing in the Impulse Invariance He)立叱号+受 fH.(2)≠0,2≥π/T, then HH2)体r号 Aliasing -2π/T,/Ta πTa2π/Ta H(e) -2m π 2n 34
34 − Td Td − Aliasing in the Impulse Invariance ( ) 0, , c d if H j T ( ) ( ), j c d H e H jT then − 2− Td 2 Td Aliasing ( ) ( ) 2 , j c k d d H e H j j k T T =− = +
Aliasing in the Impulse Invariance He)立叱号+受 fH.(2)≠0,2≥π/T, then HH2)体r号 Aliasing -2π/T,/T πT,2π/Ta H(e) -2m 2n
35 − Aliasing in the Impulse Invariance − Td Td − 2− Td 2 Td Aliasing ( ) 0, , c d if H j T ( ) ( ), j c d H e H jT then ( ) ( ) 2 , j c k d d H e H j j k T T =− = + Aliasing may be ignored in application Design lowpass Filter