习题 一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量为3.5×10°N/m, 能伸长多少厘米? 40cm 1cm 10cm Load Load 解: △/=e6= 6 F.6 1000×40 =0.0114(c) 46·E1×10×10-4×3.5×109 5一材料在室温时的杨氏模量为3.5×10°N/m,泊松比为0.35,计算其剪切模量和体积模 量。 解:根据E=2G1+4)=3B1-2)可知: 剪切模量G=一E 3.5×108 =1.3x108(P0≈130(4Pa) 21+4)21+0.35) 体积模量B= E 3.5×108 =3.9×103(Pa)≈390(dPa) 30-24)31-0.7)
习题 4 5
材料物理性能(A) 第二章无机材料的断裂强度 材料科学与工程学院 郭学
材料科学与工程学院 郭学 第二章 无机材料的断裂强度
主要内容 主要内容: 1.断裂强度的微裂纹理论 2微裂纹的起源 3.断裂强度的测试方法 4.显微结构对断裂强度的影响
主要内容 主要内容: 1.断裂强度的微裂纹理论 2 微裂纹的起源 3.断裂强度的测试方法 4.显微结构对断裂强度的影响
课程导入 随着外力作用的持续增大或应力作用时间的延续,材料在形变 达到一定程度之后将发生断裂。 5
课程导入 随着外力作用的持续增大或应力作用时间的延续,材料在形变 达到一定程度之后将发生断裂。 5
2.无机材料的断裂强度 30 不同材料应力-应变曲线 8 一陶瓷材料 25 一金属材料 6 20 一有机材料 延伸率 第三阶段蠕变 4 第二阶段蠕变 5 102 10 第一阶段蠕变 5 0 弹性变形 时间(小时) 100 200 300 20 40 60 80 名义应变 随着外力作用的持续增大或应力作用时间的延续,材料在形变达到一定程度之后 将发生断裂
2. 无机材料的断裂强度 0 5 10 15 20 25 30 0 20 40 60 80 名义应力 名义应变 不同材料应力-应变曲线 陶瓷材料 金属材料 有机材料 延 伸 率 × 102 8 6 4 2 0 0 100 200 300 时间(小时) 第二阶段蠕变 第三阶段蠕变 第一阶段蠕变 弹性变形 随着外力作用的持续增大或应力作用时间的延续,材料在形变达到一定程度之后 将发生断裂