本讲主要内容一1基于人员成本最小方法建立车次链一2数学求解方法3人员轮班
本讲主要内容 第一节 可持续发展与交通运输 3 人员轮班 2 数学求解方法 1 基于人员成本最小方法建立车次链
1基于人员成本最小方法建立车次链公交运营计划的突出特点:无薪空闲时间a)高峰和平峰时段对资源的需求不同;(b)工作时间段为非整数小时。T.max从公交企业的角度看,,司售人员排班问题被看成是人力成本最小化问题目标:(间歇时间)使空闲时间最大化并大于Tmax
公交运营计划的突出特点: (a)高峰和平峰时段对资源的需求不同; (b)工作时间段为非整数小时。 1 基于人员成本最小方法建立车次链 无薪空闲时间 Tmax 从公交企业的角度看,司售人员排班问题被看成是 人力成本最小化问题。 目标:使空闲时间(间歇时间)最大化并大于Tmax
1基于人员成本最小方法建立车次链一一平峰时段内的到达一发车车次连接受础,令确为中所有到达时间点的集合,并对于一个给定的平峰时段令为中所有发车时间点的集合。为=-,并且>。车次链中与之间的连发车时间与到达时间差为即可以表示为空闲时间。接就是有效空闲时间,民段中与之间的局部峰值w为d(k,ta),其中定义平峰时段e<≤t≤t<s+,和%+1分别为H开始和结束时间。如果局部峰值W在开始或结束时的到发车次大于1,则和V中只有一个时点满足以上定义。为础内之前(包括”)的发车车次数,Hka为中:(包括)之前的到达数
1 基于人员成本最小方法建立车次链 -平峰时段内的到达-发车车次连接
1基于人员成本最小方法建立车次链一一平峰时段内的到达-发车车次连接引理10. 1:&,mHc中在之前到达一发车车次连接数量一定等于ad(k,t)aHhmD(k,tuv)32KktutyemSm+1
1 基于人员成本最小方法建立车次链 -平峰时段内的到达-发车车次连接 引理10.1: k Hm k em u st v et k m 1 s (a) 4 3 2 1 0 d(k,t) D(k,tuv)
1基于人员成本最小方法建立车次链一一平峰时段内的到达-发车车次连接引理10. 2:H中在之后到达-发车车次连接数量可由(α*-α*)确定。Y*d(k,t)(b)6k,m5k.maJk.n-u2v2u2v22uViuivk.mAauiVi3210
1 基于人员成本最小方法建立车次链 -平峰时段内的到达-发车车次连接 引理10.2: (b) 6 5 4 3 2 1 0 d(k,t) a m u1v1 k, a - d m u v m u v1 1 1 1 k, k, d a - m u v m u2v2 2 2 k, k