对编骨彌制的基本要非 ◆众所周知:现有所有编码的输出都要经过调制映射搬到或直接编码到适于 传输的复数域中的星座图,这就是编码调制(含纯调制)。基本信息论告 诉我们编码调制应满足以下基本条件 1)输入与输出序列之间必须满足一一对应关系 2)输出序列间的“距离”应最大。其必要条件是编码支路间的“距离 ”应最大,这将要求输出不同电平(星座点)间的“距离”应最大; 3)在信道噪声呈复高斯分布时,编码调制输出也应呈现复高斯分布; 11
对编码调制的基本要求 ◆ 众所周知:现有所有编码的输出都要经过调制映射搬到或直接编码到适于 传输的复数域中的星座图,这就是编码调制(含纯调制)。基本信息论告 诉我们编码调制应满足以下基本条件: ➢ 1)输入与输出序列之间必须满足一一对应关系; ➢ 2)输出序列间的“距离”应最大。其必要条件是编码支路间的“距离 ”应最大,这将要求输出不同电平(星座点)间的“距离”应最大; ➢ 3)在信道噪声呈复高斯分布时,编码调制输出也应呈现复高斯分布; 11
对编骨彌制的基本要非 ◆遗憾地是现有大多数编码均是在有服域的编码,其输入输出都是有限域符 号,需经映射将其输出搬移到复数域中的星座图。 ◆尽管所有编码都是在序列级进行的,本身无可挑剔,但映射却在毫无编码 增益的符号级进行。 ◆最可悲地是几乎所有现有星座图星座点分布都呈均匀分布,导致映射转换 的复域信号也呈现均匀分布,不可能得到最佳的复高斯分布。 ◆虽然“ Shaping"可使分布向原点集中些,但仅在选定星座图上的修补是不 解决根本问题的。 12
对编码调制的基本要求 ◆ 遗憾地是现有大多数编码均是在有限域的编码,其输入输出都是有限域符 号,需经映射将其输出搬移到复数域中的星座图。 ◆ 尽管所有编码都是在序列级进行的,本身无可挑剔,但映射却在毫无编码 增益的符号级进行。 ◆ 最可悲地是几乎所有现有星座图星座点分布都呈均匀分布,导致映射转换 的复域信号也呈现均匀分布,不可能得到最佳的复高斯分布。 ◆ 虽然“Shaping”可使分布向原点集中些,但仅在选定星座图上的修补是不 解决根本问题的。 12
对编骨彌制的基本要非 尽管目前也有非有限域编码,如部分响应及[10]等,也有利用“重叠”的如 书中参考文献!等,但其“重叠”根本不是符号“干扰”的移位重叠,且 都离不开电平分割均匀分布的星座图。 只有摈弃电平分割,使用波形分割的编码才可能实现最优编码。OWDM属 于波形编码的一种,本报告只是抛砖引玉,相信以后一定会有更好的波形 编码出现。 调制星座根本不需要存在! 13
对编码调制的基本要求 尽管目前也有非有限域编码,如部分响应及 [10] 等,也有利用“重叠”的如 书中参考文献[9] 等,但其“重叠”根本不是符号“干扰”的移位重叠,且 都离不开电平分割均匀分布的星座图。 只有摈弃电平分割,使用波形分割的编码才可能实现最优编码。OVXDM 属 于波形编码的一种,本报告只是抛砖引玉,相信以后一定会有更好的波形 编码出现。 调制星座根本不需要存在! 13
广义波形编码—0VXDM ◆ OVXDM波形编码理论的实质是反奈奎斯特准则之道而行,利用Ⅹ域符号的 数据加权移位重叠产生严重“符号间干扰”,利用其编码约束关系,形成 Ⅹ域的波形编码,使编码输出自然呈现与信道匹配的复高斯分布,根本不 需要调制映射。 ◆本报告将具体介绍时间T域的 OVTDM。 ◆ OVTDM利用数据加权复用波形的移位重叠所产生的严重“符号间干扰”形 成时间T域的波形编码,使编码输出有最少的电平数,最大的支路间欧式 距离。随着重叠重数的增加,编码输出很快地逼近了最佳的复高斯分布。 14
广义波形编码—OVXDM ◆ OVXDM波形编码理论的实质是反奈奎斯特准则之道而行,利用X域符号的 数据加权移位重叠产生严重“符号间干扰”,利用其编码约束关系,形成 X域的波形编码,使编码输出自然呈现与信道匹配的复高斯分布,根本不 需要调制映射。 ◆ 本报告将具体介绍时间T域的OVTDM 。 ◆ OVTDM利用数据加权复用波形的移位重叠所产生的严重“符号间干扰”形 成时间T域的波形编码,使编码输出有最少的电平数,最大的支路间欧式 距离。随着重叠重数的增加,编码输出很快地逼近了最佳的复高斯分布。 14
):波形编码的 OVTDM ◆并行同步传输的0VTDM模型(每路符号率1KT,总符号率1丌) time dela△T=T/K h(t) 介 data stream O FIR Pulse Shaping filter data stream1 FIR Pulse Shaping Filter △T data stream K FIR Pulse Shaping Filter (x-1)△T 图1-1:并行传输的 OVTDM模型加=0.0.△).(-1)<AsK7 15
一):波形编码的OVTDM ◆ 并行同步传输的OVTDM模型(每路符号率1/KT,总符号率1/T) 图1-1:并行传输的OVTDM模型 15 h t t K T KT ( ) 0, (0, ), ( 1) = −