The principal rotation axis is the axis of the highest fold一a6H
C5 The principal rotation axis is the axis of the highest fold. C6
The matrix representations of rotations around a C, axis:Conditions:> Principal axis is aligned with the z-axisA C, axis gives rise to n unique rotationaloperations labeled as C,m (m = 1, 2,..., n)AngleofallowedMatrix of allowed rotationsrotations0-sinαcos a2m元α =m0Cnsina二cos aαnn010(m = 1,2,...,n)
The matrix representations of rotations around a Cn axis: Cn Conditions: Principal axis is aligned with the z-axis A Cn axis gives rise to n unique rotational operations labeled as Cn m (m = 1, 2,., n). 0 0 1 0 0 sin cos cos sin m Cn n m 2 (m = 1,2,.,n) Matrix of allowed rotations Angle of allowed rotations:
The matrix representation of rotational operations: e.g., C,mCn IIzAllowed rotations: α = 2mn (m =1,2,...,n)x,=-rcosB=rcos(α+A)=rcosAcosα-rsinAsinaB=元-(A+α=xcosα-ysinα(xy)yi=rsinB=xsinα+ycosαBZi=zα0-sinαcosax大xym0sinacosayV00Z?(xy)0-sinαcosαx=rcosA0sinαcosa00y=rsin
The matrix representation of rotational operations: e.g., Cn m A (x,y) (x1 ,y1 ) Cn ||z X Y 0 0 1 0 0 sin cos cos sin m Cn z y x z y x C z y x m n 0 0 1 0 0 1 1 1 sin cos cos sin x y r r x = rcosA y = rsinA B cos sin cos cos sin sin cos cos( ) x y r A r A x r B r A 1 B ( A ) y1 rsinB x sin y cos Allowed rotations: = 2mn (m =1,2,.,n) z1= z
Reflection and the Mirror plane (o)>If reflection of an object throughaplane produces anindistinguishable configuration, that plane is a plane of symmetry(mirrorplane,)(x, -y, z)(x,y,z)?100xTx00O-10一OO1XZxz000
If reflection of an object through a plane produces an indistinguishable configuration, that plane is a plane of symmetry (mirror plane, s). 4) Reflection and the Mirror plane (s) 0 0 1 0 1 0 1 0 0 s xz z y x z y x z y x xz 0 0 1 0 1 0 1 0 0 s (x, -y, z) (x,y,z) z y x z sxz x y sxz syz
Likewise, we have000x0xX10000ayVxyxy000Z000xXOOVZ0
0 0 1 0 1 0 1 0 0 s xy z y x z y x z y x xy 0 0 1 0 1 0 1 0 0 s Likewise, we have 0 0 1 0 1 0 1 0 0 s yz z y x z y x z y x yz 0 0 1 0 1 0 1 0 0 s