EX, 3.3 Sum of two exponential sequences Determine the z-transform, including the roc pole-zero-plot, for sequence uln+ Solution 2 3 ul n ulna n=-0 n2“+ n n2 n=-00 2 ∑ n=0 2 n=-00 I Engineering_ shandong UniV
17 2021/1/31 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Ex. 3.3 Sum of two exponential sequences 1 1 2 3 n n x n u n u n = + − ( ) 1 1 2 3 n n n n X z u n u n z − =− = + − 1 1 0 1 1 2 3 n n n n z z − − = =− = + − 1 1 2 3 n n n n n n u n z u n z − − =− =− = + − ◆Determine the z-transform, including the ROC, pole-zero-plot, for sequence: Solution:
Example 3.3: Sum of two exponential sequences X(=2z1+∑|- n=-00 2z z 12 1+-z t-Z 2 R0c|>and|>l→Roc:|> 18 2021/1/31 Zhongguo Liu_ Biomedical Engineering_shandong Univ
18 2021/1/31 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 3.3: Sum of two exponential sequences 1 1 1 : 2 3 2 z and z ROC z ( ) 1 1 0 1 1 2 3 n n n n X z z z − − = =− = + − 1 1 1 2 12 1 1 1 1 2 3 z z z z − − − = − + 1 1 1 1 1 1 1 1 2 3 z z − − = + − + ROC:
手 m z-plane n z-plane e ORe 1+-z 2 12 Re 1+ Zhongguo Liu_ Biomedical Engineering_shandong Univ
19 2021/1/31 Zhongguo Liu_Biomedical Engineering_Shandong Univ. 1 1 1 1 2 z − − 1 1 1 1 3 z − + 1 1 1 2 12 1 1 1 1 2 3 z z z z − − − − +
Example 3.4: Sum of two exponential =吨 n+|-|a xin=a un Solution X(z) uIne> for z> uln> 1+-z l4n|+ ×人C 11+2z 20 ROC
20 2021/1/31 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 3.4: Sum of two exponential 2 1 2 1 1 1 2 1 1 − − , z z u n Z n 3 1 3 1 1 1 3 1 1 + − − , z z u n Z n 2 1 3 1 1 1 2 1 1 1 3 1 2 1 1 1 + + − + − − − , z z z u n u n Z n n 1 1 2 3 n n x n u n u n = + − xn a un n = ( ) z X z z a = − for z a Solution: ROC:
Example 3.5 Two-sided exponential sequence n xn 啊n- n==aul-n Solution Ⅹt un> z-0 1+ for z<a l小-n-11 2< 2 Xz RoC: <z< 1+-z 2 +—2 21 2021/1/31 Zhongguo Liu_ Biomedical Engineering_shandong Univ
21 2021/1/31 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 3.5: Two-sided exponential sequence 1 2 1 3 1 − − − x n = − u n u n n n 3 1 3 1 1 1 3 1 1 + − − , z z u n Z n 2 1 2 1 1 1 1 2 1 1 − − − − − , z z u n Z n ( ) 2 1 3 1 2 1 1 3 1 1 12 1 2 2 1 1 1 3 1 1 1 1 1 1 1 − + − = − + + = − − − − ROC : z z z z z z z X z ( ) z X z z a = − for z a xn= −a u− n −1 n Solution: