能量港 Energy Method) F dFI oL, dAf1 △l △l 积分得:W=[dW= F-d FF △Z 0E4 2E42 6
共1页 6 (Energy Method) F F l l F O l l l1 dl1 dF1 F1 积分得: l F EA F l F EA l W W F F Δ 2 2 d d 2 1 0 = = 1 = =
能量港( Energy Method) 根据功能原理 V=W,可得以下变形能表达式 VE=W=FA=-FNAZ 4l≈FFNl EA EA F Fml 2E42E4 当轴力或截面发生变化时:V ∑ 2E A
共1页 7 (Energy Method) 根据功能原理 当轴力或截面发生变化时: Vε= W , 可得以下变形能表达式 V W F l F Δl 2 1 Δ 2 1 ε = = = N EA F l EA Fl l N Δ = = EA F l EA F l V 2 2 2 N 2 ε = = = = n i i i i i E A F l V 1 2 N ε 2
能量滤( Energy Methoc d Fn(x)d 当轴力或截面连续变化时:V=J02EA(x) 比能( strain energy density): 单位体积的应变能记作U F =-o8 丿4l2 o= Ea 2E8 U522E2 (单位J/m3) 8
共1页 8 (Energy Method) (单位 J/m3 ) 比能 ( strain energy density): 单位体积的应变能. 记作u 当轴力或截面连续变化时: = l EA x F x x V 0 2 N ε 2 ( ) ( )d σε Al F l V U 2 1 Δ 2 1 uε = = = σ = Eε 2 2 2 1 2 2 ε Eε E σ u = σε = =
能量滤 (Energy Method) 2.扭转杆内的变形能( Strain energy for torsional loads) 1 MI M2I T2I E=W=M·Aq=M 2G 2G1 2GI 2 T(x) dx 2G,(x) 或V=∑ =12G: I
共1页 9 (Energy Method) 2.扭转杆内的变形能(Strain energy for torsional loads) 或 l p 2 p 2 e p e ε e e 2 2 2 1 Δ 2 1 GI T l GI M l GI M l V = W = M = M = = = l x GI x T x V d 2 ( ) ( ) p 2 ε = = n i i i i i G I T l V 1 p 2 ε 2 Me Me Me
能量港 Energy Method 3弯曲变形的变形能 Strain energy for flexural loads) M 纯弯曲( pure bending) 6 U=W=-M·0=-M MI MI 2E 2EI 横力弯曲( nonuniform bending) (x e 2E/(x) 10
共1页 10 (Energy Method) • 纯弯曲(pure bending ) • 横力弯曲(nonuniform bending ) 3.弯曲变形的变形能 (Strain energy for flexural loads) θ Me EI M l EI M l V W M θ M 2 2 1 2 1 2 = = = = e ε e e x EI x M x V l d 2 ( ) ( ) 2 e ε = Me Me Me