區析( Buckling of Columns 压杆任一x截面沿y方向的位移w=f(x) 该截面的弯矩M(x)=-Fh 杆的挠曲线近似微分方程 Elw =M(x)=-Fw(a M(x)=Fw 令k2 F El BI 得w+k2v=0(b) (b)式的通解为 = Sinha+Bc0skx(c)(A、B为积分常数)
(Buckling of Columns) 该截面的弯矩 杆的挠曲线近似微分方程 压杆任一 x 截面沿 y 方向的位移 w = f (x) M(x) = −Fw EIw = M(x) = −Fw '' (a) 令 EI F k = 2 (b)式的通解为 w = Asinkx + Bcoskx (c) (A、B为积分常数) 0 '' 2 得 w + k w = (b) m m x y B F M(x)=-Fw
區析( Buckling of Columns 边界条件 x=0,W 00 由公式(c) Asin0+Bcos0=0→B=0 4=0 Asin kl=0 sink=o 讨论: 若4=0,w≡0 则必须sink=0M=n(n=0,1,2,)
(Buckling of Columns) 边界条件 由公式(c) 讨论: x = 0, w = 0 x = l, w = 0 Asin0 + Bcos0 = 0 → B = 0 Asinkl = 0 A = 0 sin kl = 0 若 A = 0,w 0 m x m w B x y l F 则必须 sin kl = 0 kl = nπ(n = 0,1,2, )