《数值逼近》第七章 样条逼近方法

掌握样条函数及性质、B-样条及性质、三次样条插值。 借助于多项式来逼近,虽然有很多优点,但由于多项式乃幂级数的特例,其在 一点附近的性质足以决定它的整体性质。然而自然界较大范围内的许多现象,如物 理或生物现象间的关系往往呈现互不关联、互相割裂的本性。亦即在不同区域中, 它们的性状可以完全不相关。另一方面,从数学上讲,例如在多项式插值理论中, 具有n个插值点的一元插值多项式是一个-1次的多项式,它可能有n-3个拐点。这 对于比较平滑的函数来说就不是那么理想了。
文件格式:DOC,文件大小:1.82MB,售价:11.92元
文档详细内容(约42页)
点击进入文档下载页(DOC格式)

您可能感兴趣的文档

点击购买下载(DOC)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录